Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Tabula: Efficiently Computing Nonlinear Activation Functions for Secure Neural Network Inference


Mar 05, 2022
Maximilian Lam, Michael Mitzenmacher, Vijay Janapa Reddi, Gu-Yeon Wei, David Brooks


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

The People's Speech: A Large-Scale Diverse English Speech Recognition Dataset for Commercial Usage


Nov 17, 2021
Daniel Galvez, Greg Diamos, Juan Ciro, Juan Felipe Cerón, Keith Achorn, Anjali Gopi, David Kanter, Maximilian Lam, Mark Mazumder, Vijay Janapa Reddi

* Part of 2021 Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix


Jun 10, 2021
Maximilian Lam, Gu-Yeon Wei, David Brooks, Vijay Janapa Reddi, Michael Mitzenmacher

* ICML 2021 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Widening Access to Applied Machine Learning with TinyML


Jun 09, 2021
Vijay Janapa Reddi, Brian Plancher, Susan Kennedy, Laurence Moroney, Pete Warden, Anant Agarwal, Colby Banbury, Massimo Banzi, Matthew Bennett, Benjamin Brown, Sharad Chitlangia, Radhika Ghosal, Sarah Grafman, Rupert Jaeger, Srivatsan Krishnan, Maximilian Lam, Daniel Leiker, Cara Mann, Mark Mazumder, Dominic Pajak, Dhilan Ramaprasad, J. Evan Smith, Matthew Stewart, Dustin Tingley

* Understanding the underpinnings of the TinyML edX course series: https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Quantized Neural Network Inference with Precision Batching


Feb 26, 2020
Maximilian Lam, Zachary Yedidia, Colby Banbury, Vijay Janapa Reddi


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Quantized Reinforcement Learning (QUARL)


Oct 04, 2019
Srivatsan Krishnan, Sharad Chitlangia, Maximilian Lam, Zishen Wan, Aleksandra Faust, Vijay Janapa Reddi

* Equal contribution from first three authors 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Word2Bits - Quantized Word Vectors


Mar 31, 2018
Maximilian Lam


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Speeding Up Distributed Machine Learning Using Codes


Jan 29, 2018
Kangwook Lee, Maximilian Lam, Ramtin Pedarsani, Dimitris Papailiopoulos, Kannan Ramchandran

* This work is published in IEEE Transactions on Information Theory and presented in part at the NIPS 2015 Workshop on Machine Learning Systems and the IEEE ISIT 2016 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
>>