Carnegie Mellon University
Abstract:Reward modeling (a.k.a., preference modeling) is instrumental for aligning large language models with human preferences, particularly within the context of reinforcement learning from human feedback (RLHF). While conventional reward models (RMs) have exhibited remarkable scalability, they oft struggle with fundamental functionality such as arithmetic computation, code execution, and factual lookup. In this paper, we propose a tool-augmented preference modeling approach, named \name, to address these limitations by empowering RMs with access to external environments, including calculators and search engines. This approach not only fosters synergy between tool utilization and reward grading but also enhances interpretive capacity and scoring reliability. Our study delves into the integration of external tools into RMs, enabling them to interact with diverse external sources and construct task-specific tool engagement and reasoning traces in an autoregressive manner. We validate our approach across a wide range of domains, incorporating seven distinct external tools. Our experimental results demonstrate a noteworthy overall improvement of 17.7% across eight tasks in preference ranking. Furthermore, our approach outperforms Gopher 280B by 7.3% on TruthfulQA task in zero-shot evaluation. In human evaluations, RLHF trained with Themis attains an average win rate of 32% when compared to baselines across four distinct tasks. Additionally, we provide a comprehensive collection of tool-related RM datasets, incorporating data from seven distinct tool APIs, totaling 15,000 instances. We anticipate that this publicly available dataset will facilitate and inspire further research advancements in the field.
Abstract:This paper proposes an innovative approach to Hierarchical Edge Aware 3D Point Cloud Learning (HEA-Net) that seeks to address the challenges of noise in point cloud data, and improve object recognition and segmentation by focusing on edge features. In this study, we present an innovative edge-aware learning methodology, specifically designed to enhance point cloud classification and segmentation. Drawing inspiration from the human visual system, the concept of edge-awareness has been incorporated into this methodology, contributing to improved object recognition while simultaneously reducing computational time. Our research has led to the development of an advanced 3D point cloud learning framework that effectively manages object classification and segmentation tasks. A unique fusion of local and global network learning paradigms has been employed, enriched by edge-focused local and global embeddings, thereby significantly augmenting the model's interpretative prowess. Further, we have applied a hierarchical transformer architecture to boost point cloud processing efficiency, thus providing nuanced insights into structural understanding. Our approach demonstrates significant promise in managing noisy point cloud data and highlights the potential of edge-aware strategies in 3D point cloud learning. The proposed approach is shown to outperform existing techniques in object classification and segmentation tasks, as demonstrated by experiments on ModelNet40 and ShapeNet datasets.
Abstract:Reasoning is a cognitive process of using evidence to reach a sound conclusion. The reasoning capability is essential for large language models (LLMs) to serve as the brain of the artificial general intelligence agent. Recent studies reveal that fine-tuning LLMs on data with the chain of thought (COT) reasoning process can significantly enhance their reasoning capabilities. However, we find that the fine-tuned LLMs suffer from an \textit{Assessment Misalignment} problem, i.e., they frequently assign higher scores to subpar COTs, leading to potential limitations in their reasoning abilities. To address this problem, we introduce an \textit{Alignment Fine-Tuning (AFT)} paradigm, which involves three steps: 1) fine-tuning LLMs with COT training data; 2) generating multiple COT responses for each question, and categorizing them into positive and negative ones based on whether they achieve the correct answer; 3) calibrating the scores of positive and negative responses given by LLMs with a novel constraint alignment loss. Specifically, the constraint alignment loss has two objectives: a) Alignment, which guarantees that positive scores surpass negative scores to encourage answers with high-quality COTs; b) Constraint, which keeps the negative scores confined to a reasonable range to prevent the model degradation. Beyond just the binary positive and negative feedback, the constraint alignment loss can be seamlessly adapted to the ranking situations when ranking feedback is accessible. Furthermore, we also delve deeply into recent ranking-based alignment methods, such as DPO, RRHF, and PRO, and discover that the constraint, which has been overlooked by these approaches, is also crucial for their performance. Extensive experiments on four reasoning benchmarks with both binary and ranking feedback demonstrate the effectiveness of AFT.
Abstract:Recent years have witnessed the wide adoption of large language models (LLM) in different fields, especially natural language processing and computer vision. Such a trend can also be observed in recommender systems (RS). However, most of related work treat LLM as a component of the conventional recommendation pipeline (e.g., as a feature extractor) which may not be able to fully leverage the generative power of LLM. Instead of separating the recommendation process into multiple stages such as score computation and re-ranking, this process can be simplified to one stage with LLM: directly generating recommendations from the complete pool of items. This survey reviews the progress, methods and future directions of LLM-based generative recommendation by examining three questions: 1) What generative recommendation is, 2) Why RS should advance to generative recommendation, and 3) How to implement LLM-based generative recommendation for various RS tasks. We hope that the survey can provide the context and guidance needed to explore this interesting and emerging topic.
Abstract:Due to the unbalanced training data distribution, the language ability of large language models (LLMs) is often biased towards English. In this paper, we propose to empower pre-trained LLMs on non-English languages by building semantic alignment across languages. We perform instruction-tuning on LLaMA with both translation task data and cross-lingual general task data to obtain cross-lingual models (x-LLaMA). Experiment results on cross-lingual benchmark XQUAD and MLQA show that x-LLaMA models outperform the English instruction-tuned counterpart (Alpaca) by 42.50% on average on six non-English languages. Further experiments on Chinese benchmark C-Eval show that x-LLaMA achieves significant improvement on Chinese humanities tasks, outperforming Alpaca by 8.2%. We also discover that incorporating non-English text on the target side of translation data is particularly effective for boosting non-English ability. Besides, we find that semantic alignment within LLM can be further strengthened as translation task data scales up and we present the formulation of the underlying scaling law. Evaluation results on translation dataset Flores-101 show that \method outperforms previous LLaMA-based models in all evaluated directions. Code and data will be available at: https://github.com/OwenNJU/x-LLM.
Abstract:Myocardial infarction (MI) is one of the most prevalent cardiovascular diseases with associated clinical decision-making typically based on single-valued imaging biomarkers. However, such metrics only approximate the complex 3D structure and physiology of the heart and hence hinder a better understanding and prediction of MI outcomes. In this work, we investigate the utility of complete 3D cardiac shapes in the form of point clouds for an improved detection of MI events. To this end, we propose a fully automatic multi-step pipeline consisting of a 3D cardiac surface reconstruction step followed by a point cloud classification network. Our method utilizes recent advances in geometric deep learning on point clouds to enable direct and efficient multi-scale learning on high-resolution surface models of the cardiac anatomy. We evaluate our approach on 1068 UK Biobank subjects for the tasks of prevalent MI detection and incident MI prediction and find improvements of ~13% and ~5% respectively over clinical benchmarks. Furthermore, we analyze the role of each ventricle and cardiac phase for 3D shape-based MI detection and conduct a visual analysis of the morphological and physiological patterns typically associated with MI outcomes.
Abstract:Myocardial infarction (MI) demands precise and swift diagnosis. Cardiac digital twins (CDTs) have the potential to offer individualized evaluation of cardiac function in a non-invasive manner, making them a promising approach for personalized diagnosis and treatment planning of MI. The inference of accurate myocardial tissue properties is crucial in creating a reliable CDT platform, and particularly in the context of studying MI. In this work, we investigate the feasibility of inferring myocardial tissue properties from the electrocardiogram (ECG), focusing on the development of a comprehensive CDT platform specifically designed for MI. The platform integrates multi-modal data, such as cardiac MRI and ECG, to enhance the accuracy and reliability of the inferred tissue properties. We perform a sensitivity analysis based on computer simulations, systematically exploring the effects of infarct location, size, degree of transmurality, and electrical activity alteration on the simulated QRS complex of ECG, to establish the limits of the approach. We subsequently propose a deep computational model to infer infarct location and distribution from the simulated QRS. The in silico experimental results show that our model can effectively capture the complex relationships between the QRS signals and the corresponding infarct regions, with promising potential for clinical application in the future. The code will be released publicly once the manuscript is accepted for publication.
Abstract:Learning-based methods have dominated the 3D human pose estimation (HPE) tasks with significantly better performance in most benchmarks than traditional optimization-based methods. Nonetheless, 3D HPE in the wild is still the biggest challenge of learning-based models, whether with 2D-3D lifting, image-to-3D, or diffusion-based methods, since the trained networks implicitly learn camera intrinsic parameters and domain-based 3D human pose distributions and estimate poses by statistical average. On the other hand, the optimization-based methods estimate results case-by-case, which can predict more diverse and sophisticated human poses in the wild. By combining the advantages of optimization-based and learning-based methods, we propose the Zero-shot Diffusion-based Optimization (ZeDO) pipeline for 3D HPE to solve the problem of cross-domain and in-the-wild 3D HPE. Our multi-hypothesis ZeDO achieves state-of-the-art (SOTA) performance on Human3.6M as minMPJPE $51.4$mm without training with any 2D-3D or image-3D pairs. Moreover, our single-hypothesis ZeDO achieves SOTA performance on 3DPW dataset with PA-MPJPE $42.6$mm on cross-dataset evaluation, which even outperforms learning-based methods trained on 3DPW.
Abstract:As AI-generated text increasingly resembles human-written content, the ability to detect machine-generated text becomes crucial. To address this challenge, we present GPTWatermark, a robust and high-quality solution designed to ascertain whether a piece of text originates from a specific model. Our approach extends existing watermarking strategies and employs a fixed group design to enhance robustness against editing and paraphrasing attacks. We show that our watermarked language model enjoys strong provable guarantees on generation quality, correctness in detection, and security against evasion attacks. Experimental results on various large language models (LLMs) and diverse datasets demonstrate that our method achieves superior detection accuracy and comparable generation quality in perplexity, thus promoting the responsible use of LLMs.
Abstract:Multi-vehicle pursuit (MVP) such as autonomous police vehicles pursuing suspects is important but very challenging due to its mission and safety critical nature. While multi-agent reinforcement learning (MARL) algorithms have been proposed for MVP problem in structured grid-pattern roads, the existing algorithms use randomly training samples in centralized learning, which leads to homogeneous agents showing low collaboration performance. For the more challenging problem of pursuing multiple evading vehicles, these algorithms typically select a fixed target evading vehicle for pursuing vehicles without considering dynamic traffic situation, which significantly reduces pursuing success rate. To address the above problems, this paper proposes a Progression Cognition Reinforcement Learning with Prioritized Experience for MVP (PEPCRL-MVP) in urban multi-intersection dynamic traffic scenes. PEPCRL-MVP uses a prioritization network to assess the transitions in the global experience replay buffer according to the parameters of each MARL agent. With the personalized and prioritized experience set selected via the prioritization network, diversity is introduced to the learning process of MARL, which can improve collaboration and task related performance. Furthermore, PEPCRL-MVP employs an attention module to extract critical features from complex urban traffic environments. These features are used to develop progression cognition method to adaptively group pursuing vehicles. Each group efficiently target one evading vehicle in dynamic driving environments. Extensive experiments conducted with a simulator over unstructured roads of an urban area show that PEPCRL-MVP is superior to other state-of-the-art methods. Specifically, PEPCRL-MVP improves pursuing efficiency by 3.95% over TD3-DMAP and its success rate is 34.78% higher than that of MADDPG. Codes are open sourced.