Abstract:This paper uses the capabilities of latent diffusion models (LDMs) to generate realistic RGB human-object interaction scenes to guide humanoid loco-manipulation planning. To do so, we extract from the generated images both the contact locations and robot configurations that are then used inside a whole-body trajectory optimization (TO) formulation to generate physically consistent trajectories for humanoids. We validate our full pipeline in simulation for different long-horizon loco-manipulation scenarios and perform an extensive analysis of the proposed contact and robot configuration extraction pipeline. Our results show that using the information extracted from LDMs, we can generate physically consistent trajectories that require long-horizon reasoning.
Abstract:With the fast pace of 3D capture technology and resulting abundance of 3D data, effective 3D scene editing becomes essential for a variety of graphics applications. In this work we present ScanEdit, an instruction-driven method for functional editing of complex, real-world 3D scans. To model large and interdependent sets of ob- jectswe propose a hierarchically-guided approach. Given a 3D scan decomposed into its object instances, we first construct a hierarchical scene graph representation to enable effective, tractable editing. We then leverage reason- ing capabilities of Large Language Models (LLMs) and translate high-level language instructions into actionable commands applied hierarchically to the scene graph. Fi- nally, ScanEdit integrates LLM-based guidance with ex- plicit physical constraints and generates realistic scenes where object arrangements obey both physics and common sense. In our extensive experimental evaluation ScanEdit outperforms state of the art and demonstrates excellent re- sults for a variety of real-world scenes and input instruc- tions.
Abstract:We introduce the concept of "Design Agents" for engineering applications, particularly focusing on the automotive design process, while emphasizing that our approach can be readily extended to other engineering and design domains. Our framework integrates AI-driven design agents into the traditional engineering workflow, demonstrating how these specialized computational agents interact seamlessly with engineers and designers to augment creativity, enhance efficiency, and significantly accelerate the overall design cycle. By automating and streamlining tasks traditionally performed manually, such as conceptual sketching, styling enhancements, 3D shape retrieval and generative modeling, computational fluid dynamics (CFD) meshing, and aerodynamic simulations, our approach reduces certain aspects of the conventional workflow from weeks and days down to minutes. These agents leverage state-of-the-art vision-language models (VLMs), large language models (LLMs), and geometric deep learning techniques, providing rapid iteration and comprehensive design exploration capabilities. We ground our methodology in industry-standard benchmarks, encompassing a wide variety of conventional automotive designs, and utilize high-fidelity aerodynamic simulations to ensure practical and applicable outcomes. Furthermore, we present design agents that can swiftly and accurately predict simulation outcomes, empowering engineers and designers to engage in more informed design optimization and exploration. This research underscores the transformative potential of integrating advanced generative AI techniques into complex engineering tasks, paving the way for broader adoption and innovation across multiple engineering disciplines.
Abstract:Animation of humanoid characters is essential in various graphics applications, but requires significant time and cost to create realistic animations. We propose an approach to synthesize 4D animated sequences of input static 3D humanoid meshes, leveraging strong generalized motion priors from generative video models -- as such video models contain powerful motion information covering a wide variety of human motions. From an input static 3D humanoid mesh and a text prompt describing the desired animation, we synthesize a corresponding video conditioned on a rendered image of the 3D mesh. We then employ an underlying SMPL representation to animate the corresponding 3D mesh according to the video-generated motion, based on our motion optimization. This enables a cost-effective and accessible solution to enable the synthesis of diverse and realistic 4D animations.
Abstract:We introduce MeshPad, a generative approach that creates 3D meshes from sketch inputs. Building on recent advances in artistic-designed triangle mesh generation, our approach addresses the need for interactive artistic mesh creation. To this end, we focus on enabling consistent edits by decomposing editing into 'deletion' of regions of a mesh, followed by 'addition' of new mesh geometry. Both operations are invoked by simple user edits of a sketch image, facilitating an iterative content creation process and enabling the construction of complex 3D meshes. Our approach is based on a triangle sequence-based mesh representation, exploiting a large Transformer model for mesh triangle addition and deletion. In order to perform edits interactively, we introduce a vertex-aligned speculative prediction strategy on top of our additive mesh generator. This speculator predicts multiple output tokens corresponding to a vertex, thus significantly reducing the computational cost of inference and accelerating the editing process, making it possible to execute each editing step in only a few seconds. Comprehensive experiments demonstrate that MeshPad outperforms state-of-the-art sketch-conditioned mesh generation methods, achieving more than 22% mesh quality improvement in Chamfer distance, and being preferred by 90% of participants in perceptual evaluations.
Abstract:As social robots become more common, many have adopted cute aesthetics aiming to enhance user comfort and acceptance. However, the effect of this aesthetic choice on human feedback in reinforcement learning scenarios remains unclear. Previous research has shown that humans tend to give more positive than negative feedback, which can cause failure to reach optimal robot behavior. We hypothesize that this positive bias may be exacerbated by the robot's level of perceived cuteness. To investigate, we conducted a user study where participants critique a robot's trajectories while it performs a task. We then analyzed the impact of the robot's aesthetic cuteness on the type of participant feedback. Our results suggest that there is a shift in the ratio of positive to negative feedback when perceived cuteness changes. In light of this, we experiment with a stochastic version of TAMER which adapts based on the user's level of positive feedback bias to mitigate these effects.
Abstract:Articulated 3D object generation is fundamental for creating realistic, functional, and interactable virtual assets which are not simply static. We introduce MeshArt, a hierarchical transformer-based approach to generate articulated 3D meshes with clean, compact geometry, reminiscent of human-crafted 3D models. We approach articulated mesh generation in a part-by-part fashion across two stages. First, we generate a high-level articulation-aware object structure; then, based on this structural information, we synthesize each part's mesh faces. Key to our approach is modeling both articulation structures and part meshes as sequences of quantized triangle embeddings, leading to a unified hierarchical framework with transformers for autoregressive generation. Object part structures are first generated as their bounding primitives and articulation modes; a second transformer, guided by these articulation structures, then generates each part's mesh triangles. To ensure coherency among generated parts, we introduce structure-guided conditioning that also incorporates local part mesh connectivity. MeshArt shows significant improvements over state of the art, with 57.1% improvement in structure coverage and a 209-point improvement in mesh generation FID.
Abstract:We present a novel diffusion-based approach for coherent 3D scene reconstruction from a single RGB image. Our method utilizes an image-conditioned 3D scene diffusion model to simultaneously denoise the 3D poses and geometries of all objects within the scene. Motivated by the ill-posed nature of the task and to obtain consistent scene reconstruction results, we learn a generative scene prior by conditioning on all scene objects simultaneously to capture the scene context and by allowing the model to learn inter-object relationships throughout the diffusion process. We further propose an efficient surface alignment loss to facilitate training even in the absence of full ground-truth annotation, which is common in publicly available datasets. This loss leverages an expressive shape representation, which enables direct point sampling from intermediate shape predictions. By framing the task of single RGB image 3D scene reconstruction as a conditional diffusion process, our approach surpasses current state-of-the-art methods, achieving a 12.04% improvement in AP3D on SUN RGB-D and a 13.43% increase in F-Score on Pix3D.
Abstract:We propose a training-free approach to 3D editing that enables the editing of a single shape within a few minutes. The edited 3D mesh aligns well with the prompts, and remains identical for regions that are not intended to be altered. To this end, we first project the 3D object onto 4-view images and perform synchronized multi-view image editing along with user-guided text prompts and user-provided rough masks. However, the targeted regions to be edited are ambiguous due to projection from 3D to 2D. To ensure precise editing only in intended regions, we develop a 3D segmentation pipeline that detects edited areas in 3D space, followed by a merging algorithm to seamlessly integrate edited 3D regions with the original input. Extensive experiments demonstrate the superiority of our method over previous approaches, enabling fast, high-quality editing while preserving unintended regions.
Abstract:While remarkable success has been achieved through diffusion-based 3D generative models for shapes, 4D generative modeling remains challenging due to the complexity of object deformations over time. We propose DNF, a new 4D representation for unconditional generative modeling that efficiently models deformable shapes with disentangled shape and motion while capturing high-fidelity details in the deforming objects. To achieve this, we propose a dictionary learning approach to disentangle 4D motion from shape as neural fields. Both shape and motion are represented as learned latent spaces, where each deformable shape is represented by its shape and motion global latent codes, shape-specific coefficient vectors, and shared dictionary information. This captures both shape-specific detail and global shared information in the learned dictionary. Our dictionary-based representation well balances fidelity, contiguity and compression -- combined with a transformer-based diffusion model, our method is able to generate effective, high-fidelity 4D animations.