Abstract:Bilevel Optimization has witnessed notable progress recently with new emerging efficient algorithms and has been applied to many machine learning tasks such as data cleaning, few-shot learning, and neural architecture search. However, little attention has been paid to solve the bilevel problems under distributed setting. Federated learning (FL) is an emerging paradigm which solves machine learning tasks over distributed-located data. FL problems are challenging to solve due to the heterogeneity and communication bottleneck. However, it is unclear how these challenges will affect the convergence of Bilevel Optimization algorithms. In this paper, we study Federated Bilevel Optimization problems. Specifically, we first propose the FedBiO, a deterministic gradient-based algorithm and we show it requires $O(\epsilon^{-2})$ number of iterations to reach an $\epsilon$-stationary point. Then we propose FedBiOAcc to accelerate FedBiO with the momentum-based variance-reduction technique under the stochastic scenario. We show FedBiOAcc has complexity of $O(\epsilon^{-1.5})$. Finally, we validate our proposed algorithms via the important Fair Federated Learning task. More specifically, we define a bilevel-based group fair FL objective. Our algorithms show superior performances compared to other baselines in numerical experiments.
Abstract:Nowadays, pretrained language models (PLMs) have dominated the majority of NLP tasks. While, little research has been conducted on systematically evaluating the language abilities of PLMs. In this paper, we present a large-scale empirical study on general language ability evaluation of PLMs (ElitePLM). In our study, we design four evaluation dimensions, i.e. memory, comprehension, reasoning, and composition, to measure ten widely-used PLMs within five categories. Our empirical results demonstrate that: (1) PLMs with varying training objectives and strategies are good at different ability tests; (2) fine-tuning PLMs in downstream tasks is usually sensitive to the data size and distribution; (3) PLMs have excellent transferability between similar tasks. Moreover, the prediction results of PLMs in our experiments are released as an open resource for more deep and detailed analysis on the language abilities of PLMs. This paper can guide the future work to select, apply, and design PLMs for specific tasks. We have made all the details of experiments publicly available at https://github.com/RUCAIBox/ElitePLM.
Abstract:This paper reviews the NTIRE 2022 Challenge on Super-Resolution and Quality Enhancement of Compressed Video. In this challenge, we proposed the LDV 2.0 dataset, which includes the LDV dataset (240 videos) and 95 additional videos. This challenge includes three tracks. Track 1 aims at enhancing the videos compressed by HEVC at a fixed QP. Track 2 and Track 3 target both the super-resolution and quality enhancement of HEVC compressed video. They require x2 and x4 super-resolution, respectively. The three tracks totally attract more than 600 registrations. In the test phase, 8 teams, 8 teams and 12 teams submitted the final results to Tracks 1, 2 and 3, respectively. The proposed methods and solutions gauge the state-of-the-art of super-resolution and quality enhancement of compressed video. The proposed LDV 2.0 dataset is available at https://github.com/RenYang-home/LDV_dataset. The homepage of this challenge (including open-sourced codes) is at https://github.com/RenYang-home/NTIRE22_VEnh_SR.
Abstract:While significant progress has been made in deep video denoising, it remains very challenging for exploiting historical and future frames. Bidirectional recurrent networks (BiRNN) have exhibited appealing performance in several video restoration tasks. However, BiRNN is intrinsically offline because it uses backward recurrent modules to propagate from the last to current frames, which causes high latency and large memory consumption. To address the offline issue of BiRNN, we present a novel recurrent network consisting of forward and look-ahead recurrent modules for unidirectional video denoising. Particularly, look-ahead module is an elaborate forward module for leveraging information from near-future frames. When denoising the current frame, the hidden features by forward and look-ahead recurrent modules are combined, thereby making it feasible to exploit both historical and near-future frames. Due to the scene motion between non-neighboring frames, border pixels missing may occur when warping look-ahead feature from near-future frame to current frame, which can be largely alleviated by incorporating forward warping and border enlargement. Experiments show that our method achieves state-of-the-art performance with constant latency and memory consumption. The source code and pre-trained models will be publicly available.
Abstract:Compared with the domain-specific model, the vision-language pre-training models (VLPMs) have shown superior performance on downstream tasks with fast fine-tuning process. For example, ERNIE-ViL, Oscar and UNIMO trained VLPMs with a uniform transformers stack architecture and large amounts of image-text paired data, achieving remarkable results on downstream tasks such as image-text reference(IR and TR), vision question answering (VQA) and image captioning (IC) etc. During the training phase, VLPMs are always fed with a combination of multiple public datasets to meet the demand of large-scare training data. However, due to the unevenness of data distribution including size, task type and quality, using the mixture of multiple datasets for model training can be problematic. In this work, we introduce a large-scale multi-modal corpora named WuDaoMM, totally containing more than 650M image-text pairs. Specifically, about 600 million pairs of data are collected from multiple webpages in which image and caption present weak correlation, and the other 50 million strong-related image-text pairs are collected from some high-quality graphic websites. We also release a base version of WuDaoMM with 5 million strong-correlated image-text pairs, which is sufficient to support the common cross-modal model pre-training. Besides, we trained both an understanding and a generation vision-language (VL) model to test the dataset effectiveness. The results show that WuDaoMM can be applied as an efficient dataset for VLPMs, especially for the model in text-to-image generation task. The data is released at https://data.wudaoai.cn
Abstract:As Transformer evolved, pre-trained models have advanced at a breakneck pace in recent years. They have dominated the mainstream techniques in natural language processing (NLP) and computer vision (CV). How to adapt pre-training to the field of Vision-and-Language (V-L) learning and improve the performance on downstream tasks becomes a focus of multimodal learning. In this paper, we review the recent progress in Vision-Language Pre-Trained Models (VL-PTMs). As the core content, we first briefly introduce several ways to encode raw images and texts to single-modal embeddings before pre-training. Then, we dive into the mainstream architectures of VL-PTMs in modeling the interaction between text and image representations. We further present widely-used pre-training tasks, after which we introduce some common downstream tasks. We finally conclude this paper and present some promising research directions. Our survey aims to provide multimodal researchers a synthesis and pointer to related research.
Abstract:Text Generation aims to produce plausible and readable text in human language from input data. The resurgence of deep learning has greatly advanced this field by neural generation models, especially the paradigm of pretrained language models (PLMs). Grounding text generation on PLMs is seen as a promising direction in both academia and industry. In this survey, we present the recent advances achieved in the topic of PLMs for text generation. In detail, we begin with introducing three key points of applying PLMs to text generation: 1) how to encode the input data as representations preserving input semantics which can be fused into PLMs; 2) how to design a universal and performant architecture of PLMs served as generation models; and 3) how to optimize PLMs given the reference text and ensure the generated text satisfying special text properties. Then, we figure out several challenges and future directions within each key point. Next, we present a summary of various useful resources and typical text generation applications to work with PLMs. Finally, we conclude and summarize the contribution of this survey.
Abstract:Recently, pretrained language models (PLMs) have made exceptional success in language generation. To leverage the rich knowledge encoded by PLMs, a simple yet powerful mechanism is to use prompts, in the form of either discrete tokens or continuous embeddings. In existing studies, manual prompts are time-consuming and require domain expertise, while continuous prompts are typically independent of the inputs. To address this issue, we propose a novel continuous prompting approach, called Context-Tuning, to fine-tuning PLMs for natural language generation. Firstly, the prompts are derived based on the input text, so that they can elicit useful knowledge from PLMs for generation. We refer to such prompts as contextualized prompts. Secondly, to further enhance the relevance of the generated text to the inputs, we utilize continuous inverse prompting to refine the process of natural language generation by modeling an inverse generation process from output to input. Moreover, we propose a lightweight contexttuning, fine-tuning only 0.4% of parameters while retaining well performance.
Abstract:In this paper, we propose a new Hessian inverse free Fully Single Loop Algorithm (FSLA) for bilevel optimization problems. Classic algorithms for bilevel optimization admit a double loop structure which is computationally expensive. Recently, several single loop algorithms have been proposed with optimizing the inner and outer variable alternatively. However, these algorithms not yet achieve fully single loop. As they overlook the loop needed to evaluate the hyper-gradient for a given inner and outer state. In order to develop a fully single loop algorithm, we first study the structure of the hyper-gradient and identify a general approximation formulation of hyper-gradient computation that encompasses several previous common approaches, e.g. back-propagation through time, conjugate gradient, \emph{etc.} Based on this formulation, we introduce a new state variable to maintain the historical hyper-gradient information. Combining our new formulation with the alternative update of the inner and outer variables, we propose an efficient fully single loop algorithm. We theoretically show that the error generated by the new state can be bounded and our algorithm converges with the rate of $O(\epsilon^{-2})$. Finally, we verify the efficacy our algorithm empirically through multiple bilevel optimization based machine learning tasks.
Abstract:Adaptive gradient methods have shown excellent performance for solving many machine learning problems. Although multiple adaptive methods were recently studied, they mainly focus on either empirical or theoretical aspects and also only work for specific problems by using specific adaptive learning rates. It is desired to design a universal framework for practical algorithms of adaptive gradients with theoretical guarantee to solve general problems. To fill this gap, we propose a faster and universal framework of adaptive gradients (i.e., SUPER-ADAM) by introducing a universal adaptive matrix that includes most existing adaptive gradient forms. Moreover, our framework can flexibly integrates the momentum and variance reduced techniques. In particular, our novel framework provides the convergence analysis support for adaptive gradient methods under the nonconvex setting. In theoretical analysis, we prove that our new algorithm can achieve the best known complexity of $\tilde{O}(\epsilon^{-3})$ for finding an $\epsilon$-stationary point of nonconvex optimization, which matches the lower bound for stochastic smooth nonconvex optimization. In numerical experiments, we employ various deep learning tasks to validate that our algorithm consistently outperforms the existing adaptive algorithms.