Tsinghua University
Abstract:(Partial) ranking loss is a commonly used evaluation measure for multi-label classification, which is usually optimized with convex surrogates for computational efficiency. Prior theoretical work on multi-label ranking mainly focuses on (Fisher) consistency analyses. However, there is a gap between existing theory and practice -- some pairwise losses can lead to promising performance but lack consistency, while some univariate losses are consistent but usually have no clear superiority in practice. In this paper, we attempt to fill this gap through a systematic study from two complementary perspectives of consistency and generalization error bounds of learning algorithms. Our results show that learning algorithms with the consistent univariate loss have an error bound of $O(c)$ ($c$ is the number of labels), while algorithms with the inconsistent pairwise loss depend on $O(\sqrt{c})$ as shown in prior work. This explains that the latter can achieve better performance than the former in practice. Moreover, we present an inconsistent reweighted univariate loss-based learning algorithm that enjoys an error bound of $O(\sqrt{c})$ for promising performance as well as the computational efficiency of univariate losses. Finally, experimental results validate our theoretical analyses.
Abstract:Deep learning models are vulnerable to adversarial examples, which can fool a target classifier by imposing imperceptible perturbations onto natural examples. In this work, we consider the practical and challenging decision-based black-box adversarial setting, where the attacker can only acquire the final classification labels by querying the target model without access to the model's details. Under this setting, existing works often rely on heuristics and exhibit unsatisfactory performance. To better understand the rationality of these heuristics and the limitations of existing methods, we propose to automatically discover decision-based adversarial attack algorithms. In our approach, we construct a search space using basic mathematical operations as building blocks and develop a random search algorithm to efficiently explore this space by incorporating several pruning techniques and intuitive priors inspired by program synthesis works. Although we use a small and fast model to efficiently evaluate attack algorithms during the search, extensive experiments demonstrate that the discovered algorithms are simple yet query-efficient when transferred to larger normal and defensive models on the CIFAR-10 and ImageNet datasets. They achieve comparable or better performance than the state-of-the-art decision-based attack methods consistently.
Abstract:We present Mixture of Contrastive Experts (MiCE), a unified probabilistic clustering framework that simultaneously exploits the discriminative representations learned by contrastive learning and the semantic structures captured by a latent mixture model. Motivated by the mixture of experts, MiCE employs a gating function to partition an unlabeled dataset into subsets according to the latent semantics and multiple experts to discriminate distinct subsets of instances assigned to them in a contrastive learning manner. To solve the nontrivial inference and learning problems caused by the latent variables, we further develop a scalable variant of the Expectation-Maximization (EM) algorithm for MiCE and provide proof of the convergence. Empirically, we evaluate the clustering performance of MiCE on four widely adopted natural image datasets. MiCE achieves significantly better results than various previous methods and a strong contrastive learning baseline.
Abstract:It is an important yet challenging setting to continually learn new tasks from a few examples. Although numerous efforts have been devoted to either continual learning or few-shot learning, little work has considered this new setting of few-shot continual learning (FSCL), which needs to minimize the catastrophic forgetting to the old tasks and gradually improve the ability of few-shot generalization. In this paper, we provide a first systematic study on FSCL and present an effective solution with deep neural networks. Our solution is based on the observation that continual learning of a task sequence inevitably interferes few-shot generalization, which makes it highly nontrivial to extend few-shot learning strategies to continual learning scenarios. We draw inspirations from the robust brain system and develop a method that (1) interdependently updates a pair of fast / slow weights for continual learning and few-shot learning to disentangle their divergent objectives, inspired by the biological model of meta-plasticity and fast / slow synapse; and (2) applies a brain-inspired two-step consolidation strategy to learn a task sequence without forgetting in the fast weights while improve generalization without overfitting in the slow weights. Extensive results on various benchmarks show that our method achieves a better performance than joint training of all the tasks ever seen. The ability of few-shot generalization is also substantially improved from incoming tasks and examples.
Abstract:This paper describes an AI agent that plays the popular first-person-shooter (FPS) video game `Counter-Strike; Global Offensive' (CSGO) from pixel input. The agent, a deep neural network, matches the performance of the medium difficulty built-in AI on the deathmatch game mode, whilst adopting a humanlike play style. Unlike much prior work in games, no API is available for CSGO, so algorithms must train and run in real-time. This limits the quantity of on-policy data that can be generated, precluding many reinforcement learning algorithms. Our solution uses behavioural cloning - training on a large noisy dataset scraped from human play on online servers (4 million frames, comparable in size to ImageNet), and a smaller dataset of high-quality expert demonstrations. This scale is an order of magnitude larger than prior work on imitation learning in FPS games.
Abstract:It is critical yet challenging for deep learning models to properly characterize uncertainty that is pervasive in real-world environments. Although a lot of efforts have been made, such as heteroscedastic neural networks (HNNs), little work has demonstrated satisfactory practicability due to the different levels of compromise on learning efficiency, quality of uncertainty estimates, and predictive performance. Moreover, existing HNNs typically fail to construct an explicit interaction between the prediction and its associated uncertainty. This paper aims to remedy these issues by developing SDE-HNN, a new heteroscedastic neural network equipped with stochastic differential equations (SDE) to characterize the interaction between the predictive mean and variance of HNNs for accurate and reliable regression. Theoretically, we show the existence and uniqueness of the solution to the devised neural SDE. Moreover, based on the bias-variance trade-off for the optimization in SDE-HNN, we design an enhanced numerical SDE solver to improve the learning stability. Finally, to more systematically evaluate the predictive uncertainty, we present two new diagnostic uncertainty metrics. Experiments on the challenging datasets show that our method significantly outperforms the state-of-the-art baselines in terms of both predictive performance and uncertainty quantification, delivering well-calibrated and sharp prediction intervals.
Abstract:Despite their appealing flexibility, deep neural networks (DNNs) are vulnerable against adversarial examples. Various adversarial defense strategies have been proposed to resolve this problem, but they typically demonstrate restricted practicability owing to unsurmountable compromise on universality, effectiveness, or efficiency. In this work, we propose a more practical approach, Lightweight Bayesian Refinement (LiBRe), in the spirit of leveraging Bayesian neural networks (BNNs) for adversarial detection. Empowered by the task and attack agnostic modeling under Bayes principle, LiBRe can endow a variety of pre-trained task-dependent DNNs with the ability of defending heterogeneous adversarial attacks at a low cost. We develop and integrate advanced learning techniques to make LiBRe appropriate for adversarial detection. Concretely, we build the few-layer deep ensemble variational and adopt the pre-training & fine-tuning workflow to boost the effectiveness and efficiency of LiBRe. We further provide a novel insight to realise adversarial detection-oriented uncertainty quantification without inefficiently crafting adversarial examples during training. Extensive empirical studies covering a wide range of scenarios verify the practicability of LiBRe. We also conduct thorough ablation studies to evidence the superiority of our modeling and learning strategies.
Abstract:Although deep neural networks (DNNs) have made rapid progress in recent years, they are vulnerable in adversarial environments. A malicious backdoor could be embedded in a model by poisoning the training dataset, whose intention is to make the infected model give wrong predictions during inference when the specific trigger appears. To mitigate the potential threats of backdoor attacks, various backdoor detection and defense methods have been proposed. However, the existing techniques usually require the poisoned training data or access to the white-box model, which is commonly unavailable in practice. In this paper, we propose a black-box backdoor detection (B3D) method to identify backdoor attacks with only query access to the model. We introduce a gradient-free optimization algorithm to reverse-engineer the potential trigger for each class, which helps to reveal the existence of backdoor attacks. In addition to backdoor detection, we also propose a simple strategy for reliable predictions using the identified backdoored models. Extensive experiments on hundreds of DNN models trained on several datasets corroborate the effectiveness of our method under the black-box setting against various backdoor attacks.
Abstract:Normalizing flows define a probability distribution by an explicit invertible transformation $\boldsymbol{\mathbf{z}}=f(\boldsymbol{\mathbf{x}})$. In this work, we present implicit normalizing flows (ImpFlows), which generalize normalizing flows by allowing the mapping to be implicitly defined by the roots of an equation $F(\boldsymbol{\mathbf{z}}, \boldsymbol{\mathbf{x}})= \boldsymbol{\mathbf{0}}$. ImpFlows build on residual flows (ResFlows) with a proper balance between expressiveness and tractability. Through theoretical analysis, we show that the function space of ImpFlow is strictly richer than that of ResFlows. Furthermore, for any ResFlow with a fixed number of blocks, there exists some function that ResFlow has a non-negligible approximation error. However, the function is exactly representable by a single-block ImpFlow. We propose a scalable algorithm to train and draw samples from ImpFlows. Empirically, we evaluate ImpFlow on several classification and density modeling tasks, and ImpFlow outperforms ResFlow with a comparable amount of parameters on all the benchmarks.
Abstract:Credit scoring is a major application of machine learning for financial institutions to decide whether to approve or reject a credit loan. For sake of reliability, it is necessary for credit scoring models to be both accurate and globally interpretable. Simple classifiers, e.g., Logistic Regression (LR), are white-box models, but not powerful enough to model complex nonlinear interactions among features. Fortunately, automatic feature crossing is a promising way to find cross features to make simple classifiers to be more accurate without heavy handcrafted feature engineering. However, credit scoring is usually based on different aspects of users, and the data usually contains hundreds of feature fields. This makes existing automatic feature crossing methods not efficient for credit scoring. In this work, we find local piece-wise interpretations in Deep Neural Networks (DNNs) of a specific feature are usually inconsistent in different samples, which is caused by feature interactions in the hidden layers. Accordingly, we can design an automatic feature crossing method to find feature interactions in DNN, and use them as cross features in LR. We give definition of the interpretation inconsistency in DNN, based on which a novel feature crossing method for credit scoring prediction called DNN2LR is proposed. Apparently, the final model, i.e., a LR model empowered with cross features, generated by DNN2LR is a white-box model. Extensive experiments have been conducted on both public and business datasets from real-world credit scoring applications. Experimental shows that, DNN2LR can outperform the DNN model, as well as several feature crossing methods. Moreover, comparing with the state-of-the-art feature crossing methods, i.e., AutoCross, DNN2LR can accelerate the speed for feature crossing by about 10 to 40 times on datasets with large numbers of feature fields.