Abstract:Multimodal agents are making rapid progress on general computer-use tasks, yet existing benchmarks remain largely confined to browsers and basic desktop applications, falling short in professional software workflows that dominate real-world scientific and industrial practice. To close this gap, we introduce ProSoftArena, a benchmark and platform specifically for evaluating multimodal agents in professional software environments. We establish the first capability hierarchy tailored to agent use of professional software and construct a benchmark of 436 realistic work and research tasks spanning 6 disciplines and 13 core professional applications. To ensure reliable and reproducible assessment, we build an executable real-computer environment with an execution-based evaluation framework and uniquely incorporate a human-in-the-loop evaluation paradigm. Extensive experiments show that even the best-performing agent attains only a 24.4\% success rate on L2 tasks and completely fails on L3 multi-software workflow. In-depth analysis further provides valuable insights for addressing current agent limitations and more effective design principles, paving the way to build more capable agents in professional software settings. This project is available at: https://prosoftarena.github.io.
Abstract:Semi-supervised 3D object detection, aiming to explore unlabeled data for boosting 3D object detectors, has emerged as an active research area in recent years. Some previous methods have shown substantial improvements by either employing heterogeneous teacher models to provide high-quality pseudo labels or enforcing feature-perspective consistency between the teacher and student networks. However, these methods overlook the fact that the model usually tends to exhibit low sensitivity to object geometries with limited labeled data, making it difficult to capture geometric information, which is crucial for enhancing the student model's ability in object perception and localization. In this paper, we propose GeoTeacher to enhance the student model's ability to capture geometric relations of objects with limited training data, especially unlabeled data. We design a keypoint-based geometric relation supervision module that transfers the teacher model's knowledge of object geometry to the student, thereby improving the student's capability in understanding geometric relations. Furthermore, we introduce a voxel-wise data augmentation strategy that increases the diversity of object geometries, thereby further improving the student model's ability to comprehend geometric structures. To preserve the integrity of distant objects during augmentation, we incorporate a distance-decay mechanism into this strategy. Moreover, GeoTeacher can be combined with different SS3D methods to further improve their performance. Extensive experiments on the ONCE and Waymo datasets indicate the effectiveness and generalization of our method and we achieve the new state-of-the-art results. Code will be available at https://github.com/SII-Whaleice/GeoTeacher