Abstract:The Audio Deep Synthesis Detection (ADD) Challenge has been held to detect generated human-like speech. With our submitted system, this paper provides an overall assessment of track 1 (Low-quality Fake Audio Detection) and track 2 (Partially Fake Audio Detection). In this paper, spectro-temporal artifacts were detected using raw temporal signals, spectral features, as well as deep embedding features. To address track 1, low-quality data augmentation, domain adaptation via finetuning, and various complementary feature information fusion were aggregated in our system. Furthermore, we analyzed the clustering characteristics of subsystems with different features by visualization method and explained the effectiveness of our proposed greedy fusion strategy. As for track 2, frame transition and smoothing were detected using self-supervised learning structure to capture the manipulation of PF attacks in the time domain. We ranked 4th and 5th in track 1 and track 2, respectively.
Abstract:Speaker extraction seeks to extract the target speech in a multi-talker scenario given an auxiliary reference. Such reference can be auditory, i.e., a pre-recorded speech, visual, i.e., lip movements, or contextual, i.e., phonetic sequence. References in different modalities provide distinct and complementary information that could be fused to form top-down attention on the target speaker. Previous studies have introduced visual and contextual modalities in a single model. In this paper, we propose a two-stage time-domain visual-contextual speaker extraction network named VCSE, which incorporates visual and self-enrolled contextual cues stage by stage to take full advantage of every modality. In the first stage, we pre-extract a target speech with visual cues and estimate the underlying phonetic sequence. In the second stage, we refine the pre-extracted target speech with the self-enrolled contextual cues. Experimental results on the real-world Lip Reading Sentences 3 (LRS3) database demonstrate that our proposed VCSE network consistently outperforms other state-of-the-art baselines.
Abstract:Recent neural network based Direction of Arrival (DoA) estimation algorithms have performed well on unknown number of sound sources scenarios. These algorithms are usually achieved by mapping the multi-channel audio input to the single output (i.e. overall spatial pseudo-spectrum (SPS) of all sources), that is called MISO. However, such MISO algorithms strongly depend on empirical threshold setting and the angle assumption that the angles between the sound sources are greater than a fixed angle. To address these limitations, we propose a novel multi-channel input and multiple outputs DoA network called MIMO-DoAnet. Unlike the general MISO algorithms, MIMO-DoAnet predicts the SPS coding of each sound source with the help of the informative spatial covariance matrix. By doing so, the threshold task of detecting the number of sound sources becomes an easier task of detecting whether there is a sound source in each output, and the serious interaction between sound sources disappears during inference stage. Experimental results show that MIMO-DoAnet achieves relative 18.6% and absolute 13.3%, relative 34.4% and absolute 20.2% F1 score improvement compared with the MISO baseline system in 3, 4 sources scenes. The results also demonstrate MIMO-DoAnet alleviates the threshold setting problem and solves the angle assumption problem effectively.
Abstract:Dual-encoder structure successfully utilizes two language-specific encoders (LSEs) for code-switching speech recognition. Because LSEs are initialized by two pre-trained language-specific models (LSMs), the dual-encoder structure can exploit sufficient monolingual data and capture the individual language attributes. However, existing methods have no language constraints on LSEs and underutilize language-specific knowledge of LSMs. In this paper, we propose a language-specific characteristic assistance (LSCA) method to mitigate the above problems. Specifically, during training, we introduce two language-specific losses as language constraints and generate corresponding language-specific targets for them. During decoding, we take the decoding abilities of LSMs into account by combining the output probabilities of two LSMs and the mixture model to obtain the final predictions. Experiments show that either the training or decoding method of LSCA can improve the model's performance. Furthermore, the best result can obtain up to 15.4% relative error reduction on the code-switching test set by combining the training and decoding methods of LSCA. Moreover, the system can process code-switching speech recognition tasks well without extra shared parameters or even retraining based on two pre-trained LSMs by using our method.
Abstract:Sound source localization aims to seek the direction of arrival (DOA) of all sound sources from the observed multi-channel audio. For the practical problem of unknown number of sources, existing localization algorithms attempt to predict a likelihood-based coding (i.e., spatial spectrum) and employ a pre-determined threshold to detect the source number and corresponding DOA value. However, these threshold-based algorithms are not stable since they are limited by the careful choice of threshold. To address this problem, we propose an iterative sound source localization approach called ISSL, which can iteratively extract each source's DOA without threshold until the termination criterion is met. Unlike threshold-based algorithms, ISSL designs an active source detector network based on binary classifier to accept residual spatial spectrum and decide whether to stop the iteration. By doing so, our ISSL can deal with an arbitrary number of sources, even more than the number of sources seen during the training stage. The experimental results show that our ISSL achieves significant performance improvements in both DOA estimation and source number detection compared with the existing threshold-based algorithms.
Abstract:Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs. Most existing HGNN-based approaches are supervised or semi-supervised learning methods requiring graphs to be annotated, which is costly and time-consuming. Self-supervised contrastive learning has been proposed to address the problem of requiring annotated data by mining intrinsic information hidden within the given data. However, the existing contrastive learning methods are inadequate for heterogeneous graphs because they construct contrastive views only based on data perturbation or pre-defined structural properties (e.g., meta-path) in graph data while ignore the noises that may exist in both node attributes and graph topologies. We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies and integrates and enhances them by reciprocally contrastive mechanism to better model heterogeneous graphs. In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately. We further use both attribute similarity and topological correlation to construct high-quality contrastive samples. Extensive experiments on three large real-world heterogeneous graphs demonstrate the superiority and robustness of HGCL over state-of-the-art methods.
Abstract:Speaker embedding is an important front-end module to explore discriminative speaker features for many speech applications where speaker information is needed. Current SOTA backbone networks for speaker embedding are designed to aggregate multi-scale features from an utterance with multi-branch network architectures for speaker representation. However, naively adding many branches of multi-scale features with the simple fully convolutional operation could not efficiently improve the performance due to the rapid increase of model parameters and computational complexity. Therefore, in the most current state-of-the-art network architectures, only a few branches corresponding to a limited number of temporal scales could be designed for speaker embeddings. To address this problem, in this paper, we propose an effective temporal multi-scale (TMS) model where multi-scale branches could be efficiently designed in a speaker embedding network almost without increasing computational costs. The new model is based on the conventional TDNN, where the network architecture is smartly separated into two modeling operators: a channel-modeling operator and a temporal multi-branch modeling operator. Adding temporal multi-scale in the temporal multi-branch operator needs only a little bit increase of the number of parameters, and thus save more computational budget for adding more branches with large temporal scales. Moreover, in the inference stage, we further developed a systemic re-parameterization method to convert the TMS-based model into a single-path-based topology in order to increase inference speed. We investigated the performance of the new TMS method for automatic speaker verification (ASV) on in-domain and out-of-domain conditions. Results show that the TMS-based model obtained a significant increase in the performance over the SOTA ASV models, meanwhile, had a faster inference speed.
Abstract:Speaker extraction aims to extract the target speaker's voice from a multi-talker speech mixture given an auxiliary reference utterance. Recent studies show that speaker extraction benefits from the location or direction of the target speaker. However, these studies assume that the target speaker's location is known in advance or detected by an extra visual cue, e.g., face image or video. In this paper, we propose an end-to-end localized target speaker extraction on pure speech cues, that is called L-SpEx. Specifically, we design a speaker localizer driven by the target speaker's embedding to extract the spatial features, including direction-of-arrival (DOA) of the target speaker and beamforming output. Then, the spatial cues and target speaker's embedding are both used to form a top-down auditory attention to the target speaker. Experiments on the multi-channel reverberant dataset called MC-Libri2Mix show that our L-SpEx approach significantly outperforms the baseline system.
Abstract:The end-to-end speech synthesis model can directly take an utterance as reference audio, and generate speech from the text with prosody and speaker characteristics similar to the reference audio. However, an appropriate acoustic embedding must be manually selected during inference. Due to the fact that only the matched text and speech are used in the training process, using unmatched text and speech for inference would cause the model to synthesize speech with low content quality. In this study, we propose to mitigate these two problems by using multiple reference audios and style embedding constraints rather than using only the target audio. Multiple reference audios are automatically selected using the sentence similarity determined by Bidirectional Encoder Representations from Transformers (BERT). In addition, we use ''target'' style embedding from a Pre-trained encoder as a constraint by considering the mutual information between the predicted and ''target'' style embedding. The experimental results show that the proposed model can improve the speech naturalness and content quality with multiple reference audios and can also outperform the baseline model in ABX preference tests of style similarity.
Abstract:Audio-visual (AV) lip biometrics is a promising authentication technique that leverages the benefits of both the audio and visual modalities in speech communication. Previous works have demonstrated the usefulness of AV lip biometrics. However, the lack of a sizeable AV database hinders the exploration of deep-learning-based audio-visual lip biometrics. To address this problem, we compile a moderate-size database using existing public databases. Meanwhile, we establish the DeepLip AV lip biometrics system realized with a convolutional neural network (CNN) based video module, a time-delay neural network (TDNN) based audio module, and a multimodal fusion module. Our experiments show that DeepLip outperforms traditional speaker recognition models in context modeling and achieves over 50% relative improvements compared with our best single modality baseline, with an equal error rate of 0.75% and 1.11% on the test datasets, respectively.