Alert button
Picture for Kui Ren

Kui Ren

Alert button

Locate and Verify: A Two-Stream Network for Improved Deepfake Detection

Sep 20, 2023
Chao Shuai, Jieming Zhong, Shuang Wu, Feng Lin, Zhibo Wang, Zhongjie Ba, Zhenguang Liu, Lorenzo Cavallaro, Kui Ren

Deepfake has taken the world by storm, triggering a trust crisis. Current deepfake detection methods are typically inadequate in generalizability, with a tendency to overfit to image contents such as the background, which are frequently occurring but relatively unimportant in the training dataset. Furthermore, current methods heavily rely on a few dominant forgery regions and may ignore other equally important regions, leading to inadequate uncovering of forgery cues. In this paper, we strive to address these shortcomings from three aspects: (1) We propose an innovative two-stream network that effectively enlarges the potential regions from which the model extracts forgery evidence. (2) We devise three functional modules to handle the multi-stream and multi-scale features in a collaborative learning scheme. (3) Confronted with the challenge of obtaining forgery annotations, we propose a Semi-supervised Patch Similarity Learning strategy to estimate patch-level forged location annotations. Empirically, our method demonstrates significantly improved robustness and generalizability, outperforming previous methods on six benchmarks, and improving the frame-level AUC on Deepfake Detection Challenge preview dataset from 0.797 to 0.835 and video-level AUC on CelebDF$\_$v1 dataset from 0.811 to 0.847. Our implementation is available at https://github.com/sccsok/Locate-and-Verify.

* 10 pages, 8 figures, 60 references. This paper has been accepted for ACM MM 2023 
Viaarxiv icon

DFIL: Deepfake Incremental Learning by Exploiting Domain-invariant Forgery Clues

Sep 18, 2023
Kun Pan, Yin Yifang, Yao Wei, Feng Lin, Zhongjie Ba, Zhenguang Liu, ZhiBo Wang, Lorenzo Cavallaro, Kui Ren

The malicious use and widespread dissemination of deepfake pose a significant crisis of trust. Current deepfake detection models can generally recognize forgery images by training on a large dataset. However, the accuracy of detection models degrades significantly on images generated by new deepfake methods due to the difference in data distribution. To tackle this issue, we present a novel incremental learning framework that improves the generalization of deepfake detection models by continual learning from a small number of new samples. To cope with different data distributions, we propose to learn a domain-invariant representation based on supervised contrastive learning, preventing overfit to the insufficient new data. To mitigate catastrophic forgetting, we regularize our model in both feature-level and label-level based on a multi-perspective knowledge distillation approach. Finally, we propose to select both central and hard representative samples to update the replay set, which is beneficial for both domain-invariant representation learning and rehearsal-based knowledge preserving. We conduct extensive experiments on four benchmark datasets, obtaining the new state-of-the-art average forgetting rate of 7.01 and average accuracy of 85.49 on FF++, DFDC-P, DFD, and CDF2. Our code is released at https://github.com/DeepFakeIL/DFIL.

* Accepted by ACMMM2023 
Viaarxiv icon

Enabling Runtime Verification of Causal Discovery Algorithms with Automated Conditional Independence Reasoning (Extended Version)

Sep 11, 2023
Pingchuan Ma, Zhenlan Ji, Peisen Yao, Shuai Wang, Kui Ren

Figure 1 for Enabling Runtime Verification of Causal Discovery Algorithms with Automated Conditional Independence Reasoning (Extended Version)
Figure 2 for Enabling Runtime Verification of Causal Discovery Algorithms with Automated Conditional Independence Reasoning (Extended Version)
Figure 3 for Enabling Runtime Verification of Causal Discovery Algorithms with Automated Conditional Independence Reasoning (Extended Version)
Figure 4 for Enabling Runtime Verification of Causal Discovery Algorithms with Automated Conditional Independence Reasoning (Extended Version)

Causal discovery is a powerful technique for identifying causal relationships among variables in data. It has been widely used in various applications in software engineering. Causal discovery extensively involves conditional independence (CI) tests. Hence, its output quality highly depends on the performance of CI tests, which can often be unreliable in practice. Moreover, privacy concerns arise when excessive CI tests are performed. Despite the distinct nature between unreliable and excessive CI tests, this paper identifies a unified and principled approach to addressing both of them. Generally, CI statements, the outputs of CI tests, adhere to Pearl's axioms, which are a set of well-established integrity constraints on conditional independence. Hence, we can either detect erroneous CI statements if they violate Pearl's axioms or prune excessive CI statements if they are logically entailed by Pearl's axioms. Holistically, both problems boil down to reasoning about the consistency of CI statements under Pearl's axioms (referred to as CIR problem). We propose a runtime verification tool called CICheck, designed to harden causal discovery algorithms from reliability and privacy perspectives. CICheck employs a sound and decidable encoding scheme that translates CIR into SMT problems. To solve the CIR problem efficiently, CICheck introduces a four-stage decision procedure with three lightweight optimizations that actively prove or refute consistency, and only resort to costly SMT-based reasoning when necessary. Based on the decision procedure to CIR, CICheck includes two variants: ED-CICheck and ED-CICheck, which detect erroneous CI tests (to enhance reliability) and prune excessive CI tests (to enhance privacy), respectively. [abridged due to length limit]

Viaarxiv icon

RemovalNet: DNN Fingerprint Removal Attacks

Aug 31, 2023
Hongwei Yao, Zheng Li, Kunzhe Huang, Jian Lou, Zhan Qin, Kui Ren

With the performance of deep neural networks (DNNs) remarkably improving, DNNs have been widely used in many areas. Consequently, the DNN model has become a valuable asset, and its intellectual property is safeguarded by ownership verification techniques (e.g., DNN fingerprinting). However, the feasibility of the DNN fingerprint removal attack and its potential influence remains an open problem. In this paper, we perform the first comprehensive investigation of DNN fingerprint removal attacks. Generally, the knowledge contained in a DNN model can be categorized into general semantic and fingerprint-specific knowledge. To this end, we propose a min-max bilevel optimization-based DNN fingerprint removal attack named RemovalNet, to evade model ownership verification. The lower-level optimization is designed to remove fingerprint-specific knowledge. While in the upper-level optimization, we distill the victim model's general semantic knowledge to maintain the surrogate model's performance. We conduct extensive experiments to evaluate the fidelity, effectiveness, and efficiency of the RemovalNet against four advanced defense methods on six metrics. The empirical results demonstrate that (1) the RemovalNet is effective. After our DNN fingerprint removal attack, the model distance between the target and surrogate models is x100 times higher than that of the baseline attacks, (2) the RemovalNet is efficient. It uses only 0.2% (400 samples) of the substitute dataset and 1,000 iterations to conduct our attack. Besides, compared with advanced model stealing attacks, the RemovalNet saves nearly 85% of computational resources at most, (3) the RemovalNet achieves high fidelity that the created surrogate model maintains high accuracy after the DNN fingerprint removal process. Our code is available at: https://github.com/grasses/RemovalNet.

* some mistake 
Viaarxiv icon

FINER: Enhancing State-of-the-art Classifiers with Feature Attribution to Facilitate Security Analysis

Aug 10, 2023
Yiling He, Jian Lou, Zhan Qin, Kui Ren

Deep learning classifiers achieve state-of-the-art performance in various risk detection applications. They explore rich semantic representations and are supposed to automatically discover risk behaviors. However, due to the lack of transparency, the behavioral semantics cannot be conveyed to downstream security experts to reduce their heavy workload in security analysis. Although feature attribution (FA) methods can be used to explain deep learning, the underlying classifier is still blind to what behavior is suspicious, and the generated explanation cannot adapt to downstream tasks, incurring poor explanation fidelity and intelligibility. In this paper, we propose FINER, the first framework for risk detection classifiers to generate high-fidelity and high-intelligibility explanations. The high-level idea is to gather explanation efforts from model developer, FA designer, and security experts. To improve fidelity, we fine-tune the classifier with an explanation-guided multi-task learning strategy. To improve intelligibility, we engage task knowledge to adjust and ensemble FA methods. Extensive evaluations show that FINER improves explanation quality for risk detection. Moreover, we demonstrate that FINER outperforms a state-of-the-art tool in facilitating malware analysis.

Viaarxiv icon

Text-CRS: A Generalized Certified Robustness Framework against Textual Adversarial Attacks

Jul 31, 2023
Xinyu Zhang, Hanbin Hong, Yuan Hong, Peng Huang, Binghui Wang, Zhongjie Ba, Kui Ren

Figure 1 for Text-CRS: A Generalized Certified Robustness Framework against Textual Adversarial Attacks
Figure 2 for Text-CRS: A Generalized Certified Robustness Framework against Textual Adversarial Attacks
Figure 3 for Text-CRS: A Generalized Certified Robustness Framework against Textual Adversarial Attacks
Figure 4 for Text-CRS: A Generalized Certified Robustness Framework against Textual Adversarial Attacks

The language models, especially the basic text classification models, have been shown to be susceptible to textual adversarial attacks such as synonym substitution and word insertion attacks. To defend against such attacks, a growing body of research has been devoted to improving the model robustness. However, providing provable robustness guarantees instead of empirical robustness is still widely unexplored. In this paper, we propose Text-CRS, a generalized certified robustness framework for natural language processing (NLP) based on randomized smoothing. To our best knowledge, existing certified schemes for NLP can only certify the robustness against $\ell_0$ perturbations in synonym substitution attacks. Representing each word-level adversarial operation (i.e., synonym substitution, word reordering, insertion, and deletion) as a combination of permutation and embedding transformation, we propose novel smoothing theorems to derive robustness bounds in both permutation and embedding space against such adversarial operations. To further improve certified accuracy and radius, we consider the numerical relationships between discrete words and select proper noise distributions for the randomized smoothing. Finally, we conduct substantial experiments on multiple language models and datasets. Text-CRS can address all four different word-level adversarial operations and achieve a significant accuracy improvement. We also provide the first benchmark on certified accuracy and radius of four word-level operations, besides outperforming the state-of-the-art certification against synonym substitution attacks.

* To appear in IEEE S&P 2024 
Viaarxiv icon

FDINet: Protecting against DNN Model Extraction via Feature Distortion Index

Jun 22, 2023
Hongwei Yao, Zheng Li, Haiqin Weng, Feng Xue, Kui Ren, Zhan Qin

Figure 1 for FDINet: Protecting against DNN Model Extraction via Feature Distortion Index
Figure 2 for FDINet: Protecting against DNN Model Extraction via Feature Distortion Index
Figure 3 for FDINet: Protecting against DNN Model Extraction via Feature Distortion Index
Figure 4 for FDINet: Protecting against DNN Model Extraction via Feature Distortion Index

Machine Learning as a Service (MLaaS) platforms have gained popularity due to their accessibility, cost-efficiency, scalability, and rapid development capabilities. However, recent research has highlighted the vulnerability of cloud-based models in MLaaS to model extraction attacks. In this paper, we introduce FDINET, a novel defense mechanism that leverages the feature distribution of deep neural network (DNN) models. Concretely, by analyzing the feature distribution from the adversary's queries, we reveal that the feature distribution of these queries deviates from that of the model's training set. Based on this key observation, we propose Feature Distortion Index (FDI), a metric designed to quantitatively measure the feature distribution deviation of received queries. The proposed FDINET utilizes FDI to train a binary detector and exploits FDI similarity to identify colluding adversaries from distributed extraction attacks. We conduct extensive experiments to evaluate FDINET against six state-of-the-art extraction attacks on four benchmark datasets and four popular model architectures. Empirical results demonstrate the following findings FDINET proves to be highly effective in detecting model extraction, achieving a 100% detection accuracy on DFME and DaST. FDINET is highly efficient, using just 50 queries to raise an extraction alarm with an average confidence of 96.08% for GTSRB. FDINET exhibits the capability to identify colluding adversaries with an accuracy exceeding 91%. Additionally, it demonstrates the ability to detect two types of adaptive attacks.

* 13 pages, 7 figures 
Viaarxiv icon

Masked Diffusion Models are Fast Learners

Jun 20, 2023
Jiachen Lei, Peng Cheng, Zhongjie Ba, Kui Ren

Figure 1 for Masked Diffusion Models are Fast Learners
Figure 2 for Masked Diffusion Models are Fast Learners
Figure 3 for Masked Diffusion Models are Fast Learners
Figure 4 for Masked Diffusion Models are Fast Learners

Diffusion models have emerged as the de-facto technique for image generation, yet they entail significant computational overhead, hindering the technique's broader application in the research community. We propose a prior-based denoising training framework, the first to incorporate the pre-train and fine-tune paradigm into the diffusion model training process, which substantially improves training efficiency and shows potential in facilitating various downstream tasks. Our approach centers on masking a high proportion (e.g., up to 90%) of the input image and employing masked score matching to denoise the visible areas, thereby guiding the diffusion model to learn more salient features from training data as prior knowledge. By utilizing this masked learning process in a pre-training stage, we efficiently train the ViT-based diffusion model on CelebA-HQ 256x256 in the pixel space, achieving a 4x acceleration and enhancing the quality of generated images compared to DDPM. Moreover, our masked pre-training technique is universally applicable to various diffusion models that directly generate images in the pixel space and facilitates learning pre-trained models with excellent generalizability: a diffusion model pre-trained on VGGFace2 attains a 46% quality improvement through fine-tuning with merely 10% local data. Our code is available at https://github.com/jiachenlei/maskdm.

Viaarxiv icon

FDInet: Protecting against DNN Model Extraction via Feature Distortion Index

Jun 20, 2023
Hongwei Yao, Zheng Li, Haiqin Weng, Feng Xue, Kui Ren, Zhan Qin

Figure 1 for FDInet: Protecting against DNN Model Extraction via Feature Distortion Index
Figure 2 for FDInet: Protecting against DNN Model Extraction via Feature Distortion Index
Figure 3 for FDInet: Protecting against DNN Model Extraction via Feature Distortion Index
Figure 4 for FDInet: Protecting against DNN Model Extraction via Feature Distortion Index

Machine Learning as a Service (MLaaS) platforms have gained popularity due to their accessibility, cost-efficiency, scalability, and rapid development capabilities. However, recent research has highlighted the vulnerability of cloud-based models in MLaaS to model extraction attacks. In this paper, we introduce FDINET, a novel defense mechanism that leverages the feature distribution of deep neural network (DNN) models. Concretely, by analyzing the feature distribution from the adversary's queries, we reveal that the feature distribution of these queries deviates from that of the model's training set. Based on this key observation, we propose Feature Distortion Index (FDI), a metric designed to quantitatively measure the feature distribution deviation of received queries. The proposed FDINET utilizes FDI to train a binary detector and exploits FDI similarity to identify colluding adversaries from distributed extraction attacks. We conduct extensive experiments to evaluate FDINET against six state-of-the-art extraction attacks on four benchmark datasets and four popular model architectures. Empirical results demonstrate the following findings FDINET proves to be highly effective in detecting model extraction, achieving a 100% detection accuracy on DFME and DaST. FDINET is highly efficient, using just 50 queries to raise an extraction alarm with an average confidence of 96.08% for GTSRB. FDINET exhibits the capability to identify colluding adversaries with an accuracy exceeding 91%. Additionally, it demonstrates the ability to detect two types of adaptive attacks.

* 13 pages, 7 figures 
Viaarxiv icon