Abstract:The "Curse of dimensionality" is prevalent across various data patterns, which increases the risk of model overfitting and leads to a decline in model classification performance. However, few studies have focused on this issue in Partial Multi-label Learning (PML), where each sample is associated with a set of candidate labels, at least one of which is correct. Existing PML methods addressing this problem are mainly based on the low-rank assumption. However, low-rank assumption is difficult to be satisfied in practical situations and may lead to loss of high-dimensional information. Furthermore, we find that existing methods have poor ability to identify positive labels, which is important in real-world scenarios. In this paper, a PML feature selection method is proposed considering two important characteristics of dataset: label relationship's noise-resistance and label connectivity. Our proposed method utilizes label relationship's noise-resistance to disambiguate labels. Then the learning process is designed through the reformed low-rank assumption. Finally, representative labels are found through label connectivity, and the weight matrix is reconstructed to select features with strong identification ability to these labels. The experimental results on benchmark datasets demonstrate the superiority of the proposed method.
Abstract:The rapid growth in feature dimension may introduce implicit associations between features and labels in multi-label datasets, making the relationships between features and labels increasingly complex. Moreover, existing methods often adopt low-dimensional linear decomposition to explore the associations between features and labels. However, linear decomposition struggles to capture complex nonlinear associations and may lead to misalignment between the feature space and the label space. To address these two critical challenges, we propose innovative solutions. First, we design a random walk graph that integrates feature-feature, label-label, and feature-label relationships to accurately capture nonlinear and implicit indirect associations, while optimizing the latent representations of associations between features and labels after low-rank decomposition. Second, we align the variable spaces by leveraging low-dimensional representation coefficients, while preserving the manifold structure between the original high-dimensional multi-label data and the low-dimensional representation space. Extensive experiments and ablation studies conducted on seven benchmark datasets and three representative datasets using various evaluation metrics demonstrate the superiority of the proposed method\footnote{Code: https://github.com/Heilong623/-GRW-}.
Abstract:Feature generation is a critical step in machine learning, aiming to enhance model performance by capturing complex relationships within the data and generating meaningful new features. Traditional feature generation methods heavily rely on domain expertise and manual intervention, making the process labor-intensive and challenging to adapt to different scenarios. Although automated feature generation techniques address these issues to some extent, they often face challenges such as feature redundancy, inefficiency in feature space exploration, and limited adaptability to diverse datasets and tasks. To address these problems, we propose a Two-Stage Feature Generation (TSFG) framework, which integrates a Transformer-based encoder-decoder architecture with Proximal Policy Optimization (PPO). The encoder-decoder model in TSFG leverages the Transformer's self-attention mechanism to efficiently represent and transform features, capturing complex dependencies within the data. PPO further enhances TSFG by dynamically adjusting the feature generation strategy based on task-specific feedback, optimizing the process for improved performance and adaptability. TSFG dynamically generates high-quality feature sets, significantly improving the predictive performance of machine learning models. Experimental results demonstrate that TSFG outperforms existing state-of-the-art methods in terms of feature quality and adaptability.
Abstract:Biomedical entity linking aims to map nonstandard entities to standard entities in a knowledge base. Traditional supervised methods perform well but require extensive annotated data to transfer, limiting their usage in low-resource scenarios. Large language models (LLMs), especially closed-source LLMs, can address these but risk stability issues and high economic costs: using these models is restricted by commercial companies and brings significant economic costs when dealing with large amounts of data. To address this, we propose ``RPDR'', a framework combining closed-source LLMs and open-source LLMs for re-ranking candidates retrieved by a retriever fine-tuned with a small amount of data. By prompting a closed-source LLM to generate training data from unannotated data and fine-tuning an open-source LLM for re-ranking, we effectively distill the knowledge to the open-source LLM that can be deployed locally, thus avoiding the stability issues and the problem of high economic costs. We evaluate RPDR on two datasets, including one real-world dataset and one publicly available dataset involving two languages: Chinese and English. RPDR achieves 0.019 Acc@1 improvement and 0.036 Acc@1 improvement on the Aier dataset and the Ask A Patient dataset when the amount of training data is not enough. The results demonstrate the superiority and generalizability of the proposed framework.
Abstract:Feature generation involves creating new features from raw data to capture complex relationships among the original features, improving model robustness and machine learning performance. Current methods using reinforcement learning for feature generation have made feature exploration more flexible and efficient. However, several challenges remain: first, during feature expansion, a large number of redundant features are generated. When removing them, current methods only retain the best features each round, neglecting those that perform poorly initially but could improve later. Second, the state representation used by current methods fails to fully capture complex feature relationships. Third, there are significant differences between discrete and continuous features in tabular data, requiring different operations for each type. To address these challenges, we propose a novel dual-agent reinforcement learning method for feature generation. Two agents are designed: the first generates new features, and the second determines whether they should be preserved. A self-attention mechanism enhances state representation, and diverse operations distinguish interactions between discrete and continuous features. The experimental results on multiple datasets demonstrate that the proposed method is effective. The code is available at https://github.com/extess0/DARL.
Abstract:In large language model (LLM) reasoning, multi-step processes have proven effective for solving complex tasks. However, the depth of exploration can significantly affect the reasoning performance. Existing methods to automatically decide the depth often bring high costs and lack flexibility, and thus undermine the model's reasoning accuracy. To address these issues, we propose Entropy-based Exploration Depth Conduction (Entro-duction), a novel method that dynamically adjusts the exploration depth during multi-step reasoning by monitoring LLM's output entropy and variance entropy. We employ these two metrics to capture the model's current uncertainty and the fluctuation of uncertainty across consecutive reasoning steps. Based on the observed changes, the LLM selects whether to deepen, expand or stop exploration according to the probability. In this way, we balance the reasoning accuracy and exploration effectiveness. Experimental results across four benchmark datasets demonstrate the efficacy of Entro-duction. We further conduct experiments and analysis on the components of Entro-duction to discuss their contributions to reasoning performance.
Abstract:In recent years, multi-view multi-label learning (MVML) has gained popularity due to its close resemblance to real-world scenarios. However, the challenge of selecting informative features to ensure both performance and efficiency remains a significant question in MVML. Existing methods often extract information separately from the consistency part and the complementary part, which may result in noise due to unclear segmentation. In this paper, we propose a unified model constructed from the perspective of global-view reconstruction. Additionally, while feature selection methods can discern the importance of features, they typically overlook the uncertainty of samples, which is prevalent in realistic scenarios. To address this, we incorporate the perception of sample uncertainty during the reconstruction process to enhance trustworthiness. Thus, the global-view is reconstructed through the graph structure between samples, sample confidence, and the view relationship. The accurate mapping is established between the reconstructed view and the label matrix. Experimental results demonstrate the superior performance of our method on multi-view datasets.
Abstract:The purpose of partial multi-label feature selection is to select the most representative feature subset, where the data comes from partial multi-label datasets that have label ambiguity issues. For label disambiguation, previous methods mainly focus on utilizing the information inside the labels and the relationship between the labels and features. However, the information existing in the feature space is rarely considered, especially in partial multi-label scenarios where the noises is considered to be concentrated in the label space while the feature information is correct. This paper proposes a method based on latent space alignment, which uses the information mined in feature space to disambiguate in latent space through the structural consistency between labels and features. In addition, previous methods overestimate the consistency of features and labels in the latent space after convergence. We comprehensively consider the similarity of latent space projections to feature space and label space, and propose new feature selection term. This method also significantly improves the positive label identification ability of the selected features. Comprehensive experiments demonstrate the superiority of the proposed method.
Abstract:Graph clustering aims to divide the graph into different clusters. The recently emerging deep graph clustering approaches are largely built on graph neural networks (GNN). However, GNN is designed for general graph encoding and there is a common issue of representation collapse in existing GNN-based deep graph clustering algorithms. We attribute two main reasons for such issue: (i) the inductive bias of GNN models: GNNs tend to generate similar representations for proximal nodes. Since graphs often contain a non-negligible amount of inter-cluster links, the bias results in error message passing and leads to biased clustering; (ii) the clustering guided loss function: most traditional approaches strive to make all samples closer to pre-learned cluster centers, which cause a degenerate solution assigning all data points to a single label thus make all samples and less discriminative. To address these challenges, we investigate graph clustering from a graph cut perspective and propose an innovative and non-GNN-based Deep Cut-informed Graph embedding and Clustering framework, namely DCGC. This framework includes two modules: (i) cut-informed graph encoding; (ii) self-supervised graph clustering via optimal transport. For the encoding module, we derive a cut-informed graph embedding objective to fuse graph structure and attributes by minimizing their joint normalized cut. For the clustering module, we utilize the optimal transport theory to obtain the clustering assignments, which can balance the guidance of proximity to the pre-learned cluster center. With the above two tailored designs, DCGC is more suitable for the graph clustering task, which can effectively alleviate the problem of representation collapse and achieve better performance. We conduct extensive experiments to demonstrate that our method is simple but effective compared with benchmarks.
Abstract:Data augmentation is an essential technique in natural language processing (NLP) for enriching training datasets by generating diverse samples. This process is crucial for improving the robustness and generalization capabilities of NLP models. However, a significant challenge remains: \textit{Insufficient Attention to Sample Distribution Diversity}. Most existing methods focus on increasing the sample numbers while neglecting the sample distribution diversity, which can lead to model overfitting. In response, we explore data augmentation's impact on dataset diversity and propose a \textbf{\underline{D}}iversity-\textbf{\underline{o}}riented data \textbf{\underline{Aug}}mentation framework (\textbf{DoAug}). % \(\mathscr{DoAug}\) Specifically, we utilize a diversity-oriented fine-tuning approach to train an LLM as a diverse paraphraser, which is capable of augmenting textual datasets by generating diversified paraphrases. Then, we apply the LLM paraphraser to a selected coreset of highly informative samples and integrate the paraphrases with the original data to create a more diverse augmented dataset. Finally, we conduct extensive experiments on 12 real-world textual datasets. The results show that our fine-tuned LLM augmenter improves diversity while preserving label consistency, thereby enhancing the robustness and performance of downstream tasks. Specifically, it achieves an average performance gain of \(10.52\%\), surpassing the runner-up baseline with more than three percentage points.