Abstract:Textual information of data is of vital importance for data mining and feature engineering. However, existing methods focus on learning the data structures and overlook the textual information along with the data. Consequently, they waste this valuable resource and miss out on the deeper data relationships embedded within the texts. In this paper, we introduce Text-Informed Feature Generation (TIFG), a novel LLM-based text-informed feature generation framework. TIFG utilizes the textual information to generate features by retrieving possible relevant features within external knowledge with Retrieval Augmented Generation (RAG) technology. In this approach, the TIFG can generate new explainable features to enrich the feature space and further mine feature relationships. We design the TIFG to be an automated framework that continuously optimizes the feature generation process, adapts to new data inputs, and improves downstream task performance over iterations. A broad range of experiments in various downstream tasks showcases that our approach can generate high-quality and meaningful features, and is significantly superior to existing methods.
Abstract:Recent advancements in single-cell genomics necessitate precision in gene panel selection to interpret complex biological data effectively. Those methods aim to streamline the analysis of scRNA-seq data by focusing on the most informative genes that contribute significantly to the specific analysis task. Traditional selection methods, which often rely on expert domain knowledge, embedded machine learning models, or heuristic-based iterative optimization, are prone to biases and inefficiencies that may obscure critical genomic signals. Recognizing the limitations of traditional methods, we aim to transcend these constraints with a refined strategy. In this study, we introduce an iterative gene panel selection strategy that is applicable to clustering tasks in single-cell genomics. Our method uniquely integrates results from other gene selection algorithms, providing valuable preliminary boundaries or prior knowledge as initial guides in the search space to enhance the efficiency of our framework. Furthermore, we incorporate the stochastic nature of the exploration process in reinforcement learning (RL) and its capability for continuous optimization through reward-based feedback. This combination mitigates the biases inherent in the initial boundaries and harnesses RL's adaptability to refine and target gene panel selection dynamically. To illustrate the effectiveness of our method, we conducted detailed comparative experiments, case studies, and visualization analysis.
Abstract:Large Language Models (LLMs) gain substantial reasoning and decision-making capabilities from thought structures. However, existing methods such as Tree of Thought and Retrieval Augmented Thoughts often fall short in complex tasks due to the limitations of insufficient local retrieval of factual knowledge and inadequate global selection of strategies. These limitations make it challenging for these methods to balance factual accuracy and comprehensive logical optimization effectively. To address these limitations, we introduce the Retrieval Augmented Thought Tree (RATT), a novel thought structure that considers both overall logical soundness and factual correctness at each step of the thinking process. Specifically, at every point of a thought branch, RATT performs planning and lookahead to explore and evaluate multiple potential reasoning steps, and integrate the fact-checking ability of Retrieval-Augmented Generation (RAG) with LLM's ability to assess overall strategy. Through this combination of factual knowledge and strategic feasibility, the RATT adjusts and integrates the thought tree structure to search for the most promising branches within the search space. This thought structure significantly enhances the model's coherence in logical inference and efficiency in decision-making, and thus increases the limit of the capacity of LLM to generate reliable inferences and decisions based on thought structures. A broad range of experiments on different types of tasks showcases that the RATT structure significantly outperforms existing methods in factual correctness and logical coherence.
Abstract:The reward model for Reinforcement Learning from Human Feedback (RLHF) has proven effective in fine-tuning Large Language Models (LLMs). Notably, collecting human feedback for RLHF can be resource-intensive and lead to scalability issues for LLMs and complex tasks. Our proposed framework Proto-RM leverages prototypical networks to enhance reward models under limited human feedback. By enabling stable and reliable structural learning from fewer samples, Proto-RM significantly enhances LLMs' adaptability and accuracy in interpreting human preferences. Extensive experiments on various datasets demonstrate that Proto-RM significantly improves the performance of reward models and LLMs in human feedback tasks, achieving comparable and usually better results than traditional methods, while requiring significantly less data. in data-limited scenarios. This research offers a promising direction for enhancing the efficiency of reward models and optimizing the fine-tuning of language models under restricted feedback conditions.
Abstract:The representation of feature space is a crucial environment where data points get vectorized and embedded for upcoming modeling. Thus the efficacy of machine learning (ML) algorithms is closely related to the quality of feature engineering. As one of the most important techniques, feature generation transforms raw data into an optimized feature space conducive to model training and further refines the space. Despite the advancements in automated feature engineering and feature generation, current methodologies often suffer from three fundamental issues: lack of explainability, limited applicability, and inflexible strategy. These shortcomings frequently hinder and limit the deployment of ML models across varied scenarios. Our research introduces a novel approach adopting large language models (LLMs) and feature-generating prompts to address these challenges. We propose a dynamic and adaptive feature generation method that enhances the interpretability of the feature generation process. Our approach broadens the applicability across various data types and tasks and draws advantages over strategic flexibility. A broad range of experiments showcases that our approach is significantly superior to existing methods.
Abstract:Large Language Models (LLMs) gain substantial reasoning and decision-making capabilities from thought structures. However, existing methods such as Tree of Thought and Retrieval Augmented Thoughts often fall short in complex tasks due to the limitations of insufficient local retrieval of factual knowledge and inadequate global selection of strategies. These limitations make it challenging for these methods to balance factual accuracy and comprehensive logical optimization effectively. To address these limitations, we introduce the Retrieval Augmented Thought Tree (RATT), a novel thought structure that considers both overall logical soundness and factual correctness at each step of the thinking process. Specifically, at every point of a thought branch, RATT performs planning and lookahead to explore and evaluate multiple potential reasoning steps, and integrate the fact-checking ability of Retrieval-Augmented Generation (RAG) with LLM's ability to assess overall strategy. Through this combination of factual knowledge and strategic feasibility, the RATT adjusts and integrates the thought tree structure to search for the most promising branches within the search space. This thought structure significantly enhances the model's coherence in logical inference and efficiency in decision-making, and thus increases the limit of the capacity of LLM to generate reliable inferences and decisions based on thought structures. A broad range of experiments on different types of tasks showcases that the RATT structure significantly outperforms existing methods in factual correctness and logical coherence.
Abstract:Data augmentation is a series of techniques that generate high-quality artificial data by manipulating existing data samples. By leveraging data augmentation techniques, AI models can achieve significantly improved applicability in tasks involving scarce or imbalanced datasets, thereby substantially enhancing AI models' generalization capabilities. Existing literature surveys only focus on a certain type of specific modality data, and categorize these methods from modality-specific and operation-centric perspectives, which lacks a consistent summary of data augmentation methods across multiple modalities and limits the comprehension of how existing data samples serve the data augmentation process. To bridge this gap, we propose a more enlightening taxonomy that encompasses data augmentation techniques for different common data modalities. Specifically, from a data-centric perspective, this survey proposes a modality-independent taxonomy by investigating how to take advantage of the intrinsic relationship between data samples, including single-wise, pair-wise, and population-wise sample data augmentation methods. Additionally, we categorize data augmentation methods across five data modalities through a unified inductive approach.
Abstract:In this paper, we propose a novel feature weighting method to address the limitation of existing feature processing methods for tabular data. Typically the existing methods assume equal importance across all samples and features in one dataset. This simplified processing methods overlook the unique contributions of each feature, and thus may miss important feature information. As a result, it leads to suboptimal performance in complex datasets with rich features. To address this problem, we introduce Tabular Feature Weighting with Transformer, a novel feature weighting approach for tabular data. Our method adopts Transformer to capture complex feature dependencies and contextually assign appropriate weights to discrete and continuous features. Besides, we employ a reinforcement learning strategy to further fine-tune the weighting process. Our extensive experimental results across various real-world datasets and diverse downstream tasks show the effectiveness of TFWT and highlight the potential for enhancing feature weighting in tabular data analysis.
Abstract:Creating an effective representation space is crucial for mitigating the curse of dimensionality, enhancing model generalization, addressing data sparsity, and leveraging classical models more effectively. Recent advancements in automated feature engineering (AutoFE) have made significant progress in addressing various challenges associated with representation learning, issues such as heavy reliance on intensive labor and empirical experiences, lack of explainable explicitness, and inflexible feature space reconstruction embedded into downstream tasks. However, these approaches are constrained by: 1) generation of potentially unintelligible and illogical reconstructed feature spaces, stemming from the neglect of expert-level cognitive processes; 2) lack of systematic exploration, which subsequently results in slower model convergence for identification of optimal feature space. To address these, we introduce an interaction-aware reinforced generation perspective. We redefine feature space reconstruction as a nested process of creating meaningful features and controlling feature set size through selection. We develop a hierarchical reinforcement learning structure with cascading Markov Decision Processes to automate feature and operation selection, as well as feature crossing. By incorporating statistical measures, we reward agents based on the interaction strength between selected features, resulting in intelligent and efficient exploration of the feature space that emulates human decision-making. Extensive experiments are conducted to validate our proposed approach.
Abstract:Feature generation aims to generate new and meaningful features to create a discriminative representation space.A generated feature is meaningful when the generated feature is from a feature pair with inherent feature interaction. In the real world, experienced data scientists can identify potentially useful feature-feature interactions, and generate meaningful dimensions from an exponentially large search space, in an optimal crossing form over an optimal generation path. But, machines have limited human-like abilities.We generalize such learning tasks as self-optimizing feature generation. Self-optimizing feature generation imposes several under-addressed challenges on existing systems: meaningful, robust, and efficient generation. To tackle these challenges, we propose a principled and generic representation-crossing framework to solve self-optimizing feature generation.To achieve hashing representation, we propose a three-step approach: feature discretization, feature hashing, and descriptive summarization. To achieve reinforcement crossing, we develop a hierarchical reinforcement feature crossing approach.We present extensive experimental results to demonstrate the effectiveness and efficiency of the proposed method. The code is available at https://github.com/yingwangyang/HRC_feature_cross.git.