Abstract:Due to their expressive capacity, diffusion models have shown great promise in offline RL and imitation learning. Diffusion Actor-Critic with Entropy Regulator (DACER) extended this capability to online RL by using the reverse diffusion process as a policy approximator, trained end-to-end with policy gradient methods, achieving strong performance. However, this comes at the cost of requiring many diffusion steps, which significantly hampers training efficiency, while directly reducing the steps leads to noticeable performance degradation. Critically, the lack of inference efficiency becomes a significant bottleneck for applying diffusion policies in real-time online RL settings. To improve training and inference efficiency while maintaining or even enhancing performance, we propose a Q-gradient field objective as an auxiliary optimization target to guide the denoising process at each diffusion step. Nonetheless, we observe that the independence of the Q-gradient field from the diffusion time step negatively impacts the performance of the diffusion policy. To address this, we introduce a temporal weighting mechanism that enables the model to efficiently eliminate large-scale noise in the early stages and refine actions in the later stages. Experimental results on MuJoCo benchmarks and several multimodal tasks demonstrate that the DACER2 algorithm achieves state-of-the-art performance in most MuJoCo control tasks with only five diffusion steps, while also exhibiting stronger multimodality compared to DACER.
Abstract:Introduction: Timely identification of intracranial hemorrhage (ICH) subtypes on non-contrast computed tomography is critical for prognosis prediction and therapeutic decision-making, yet remains challenging due to low contrast and blurring boundaries. This study evaluates the performance of zero-shot multi-modal large language models (MLLMs) compared to traditional deep learning methods in ICH binary classification and subtyping. Methods: We utilized a dataset provided by RSNA, comprising 192 NCCT volumes. The study compares various MLLMs, including GPT-4o, Gemini 2.0 Flash, and Claude 3.5 Sonnet V2, with conventional deep learning models, including ResNet50 and Vision Transformer. Carefully crafted prompts were used to guide MLLMs in tasks such as ICH presence, subtype classification, localization, and volume estimation. Results: The results indicate that in the ICH binary classification task, traditional deep learning models outperform MLLMs comprehensively. For subtype classification, MLLMs also exhibit inferior performance compared to traditional deep learning models, with Gemini 2.0 Flash achieving an macro-averaged precision of 0.41 and a macro-averaged F1 score of 0.31. Conclusion: While MLLMs excel in interactive capabilities, their overall accuracy in ICH subtyping is inferior to deep networks. However, MLLMs enhance interpretability through language interactions, indicating potential in medical imaging analysis. Future efforts will focus on model refinement and developing more precise MLLMs to improve performance in three-dimensional medical image processing.
Abstract:Reinforcement learning (RL) has proven highly effective in addressing complex decision-making and control tasks. However, in most traditional RL algorithms, the policy is typically parameterized as a diagonal Gaussian distribution with learned mean and variance, which constrains their capability to acquire complex policies. In response to this problem, we propose an online RL algorithm termed diffusion actor-critic with entropy regulator (DACER). This algorithm conceptualizes the reverse process of the diffusion model as a novel policy function and leverages the capability of the diffusion model to fit multimodal distributions, thereby enhancing the representational capacity of the policy. Since the distribution of the diffusion policy lacks an analytical expression, its entropy cannot be determined analytically. To mitigate this, we propose a method to estimate the entropy of the diffusion policy utilizing Gaussian mixture model. Building on the estimated entropy, we can learn a parameter $\alpha$ that modulates the degree of exploration and exploitation. Parameter $\alpha$ will be employed to adaptively regulate the variance of the added noise, which is applied to the action output by the diffusion model. Experimental trials on MuJoCo benchmarks and a multimodal task demonstrate that the DACER algorithm achieves state-of-the-art (SOTA) performance in most MuJoCo control tasks while exhibiting a stronger representational capacity of the diffusion policy.
Abstract:Deformable image registration is an essential approach for medical image analysis.This paper introduces MambaMorph, an innovative multi-modality deformable registration network, specifically designed for Magnetic Resonance (MR) and Computed Tomography (CT) image alignment. MambaMorph stands out with its Mamba-based registration module and a contrastive feature learning approach, addressing the prevalent challenges in multi-modality registration. The network leverages Mamba blocks for efficient long-range modeling and high-dimensional data processing, coupled with a feature extractor that learns fine-grained features for enhanced registration accuracy. Experimental results showcase MambaMorph's superior performance over existing methods in MR-CT registration, underlining its potential in clinical applications. This work underscores the significance of feature learning in multi-modality registration and positions MambaMorph as a trailblazing solution in this field. The code for MambaMorph is available at: https://github.com/Guo-Stone/MambaMorph.
Abstract:Segment Anything Model (SAM), a vision foundation model trained on large-scale annotations, has recently continued raising awareness within medical image segmentation. Despite the impressive capabilities of SAM on natural scenes, it struggles with performance decline when confronted with medical images, especially those involving blurry boundaries and highly irregular regions of low contrast. In this paper, a SAM-based parameter-efficient fine-tuning method, called SAMIHS, is proposed for intracranial hemorrhage segmentation, which is a crucial and challenging step in stroke diagnosis and surgical planning. Distinguished from previous SAM and SAM-based methods, SAMIHS incorporates parameter-refactoring adapters into SAM's image encoder and considers the efficient and flexible utilization of adapters' parameters. Additionally, we employ a combo loss that combines binary cross-entropy loss and boundary-sensitive loss to enhance SAMIHS's ability to recognize the boundary regions. Our experimental results on two public datasets demonstrate the effectiveness of our proposed method. Code is available at https://github.com/mileswyn/SAMIHS .