Abstract:As current training data for Large Language Models (LLMs) are dominated by English corpus, they are English-centric and they present impressive performance on English reasoning tasks.\footnote{This paper primarily studies English-centric models, but our method could be universal by using the centric language in the dictionary for non-English-centric LLMs.} Yet, they usually suffer from lower performance in other languages. There are about 7,000 languages over the world, and many are low-resourced on English-centric LLMs. For the sake of people who primarily speak these languages, it is especially urgent to enable our LLMs in those languages. Model training is usually effective, but computationally expensive and requires experienced NLP practitioners. This paper presents a novel and simple yet effective method called \textbf{D}ictionary \textbf{I}nsertion \textbf{P}rompting (\textbf{DIP}). When providing a non-English prompt, DIP looks up a word dictionary and inserts words' English counterparts into the prompt for LLMs. It then enables better translation into English and better English model thinking steps which leads to obviously better results. We experiment with about 200 languages from FLORES-200. Since there are no adequate datasets, we use the NLLB translator to create synthetic multilingual benchmarks from the existing 4 English reasoning benchmarks such as GSM8K and AQuA. Despite the simplicity and computationally lightweight, we surprisingly found the effectiveness of DIP on math and commonsense reasoning tasks on multiple open-source and close-source LLMs.\footnote{Our dictionaries, code, and synthetic benchmarks will be open-sourced to facilitate future research.}
Abstract:How to evaluate large language models (LLMs) cleanly has been established as an important research era to genuinely report the performance of possibly contaminated LLMs. Yet, how to cleanly evaluate the visual language models (VLMs) is an under-studied problem. We propose a novel approach to achieve such goals through data augmentation methods on the visual input information. We then craft a new visual clean evaluation benchmark with thousands of data instances. Through extensive experiments, we found that the traditional visual data augmentation methods are useful, but they are at risk of being used as a part of the training data as a workaround. We further propose using BGR augmentation to switch the colour channel of the visual information. We found that it is a simple yet effective method for reducing the effect of data contamination and fortunately, it is also harmful to be used as a data augmentation method during training. It means that it is hard to integrate such data augmentation into training by malicious trainers and it could be a promising technique to cleanly evaluate visual LLMs. Our code, data, and model weights will be released upon publication.
Abstract:How to defend large language models (LLMs) from generating toxic content is an important research area. Yet, most research focused on various model training techniques to remediate LLMs by updating their weights. A typical related research area is safety alignment. This however is often costly and tedious and can expose the model to even more problems such as catastrophic forgetting if the trainings are not carefully handled by experienced NLP practitioners. We thus propose a simple yet effective and novel algorithm, namely \textbf{Tox}ic Subword \textbf{Prun}ing (ToxPrune) to prune the subword contained by the toxic words from BPE in trained LLMs. In contrast to the previous work that demonstrates pruning BPE tokens as harmful to the task of machine translation, we surprisingly found its usefulness in preventing toxic content from being generated on LLMs. Fortunately, our findings suggest that ToxPrune simultaneously improves the toxic language model NSFW-3B on the task of dialogue response generation obviously. We surprisingly found that ToxPrune can even obviously improve official Llama-3.1-6B in the metric of dialogue diversity. Extensive automatic results and human evaluation indicate that ToxPrune could be helpful for both remediating toxic LLMs and improving non-toxic LLMs on the task of dialogue response generation.\footnote{We plan to release the resources to facilitate future work.}
Abstract:In the rapidly evolving field of natural language processing, dialogue systems primarily employ a single-step dialogue paradigm. Although this paradigm is efficient, it lacks the depth and fluidity of human interactions and does not appear natural. We introduce a novel \textbf{Step}-by-Step Dialogue Paradigm (Stephanie), designed to mimic the ongoing dynamic nature of human conversations. By employing a dual learning strategy and a further-split post-editing method, we generated and utilized a high-quality step-by-step dialogue dataset to fine-tune existing large language models, enabling them to perform step-by-step dialogues. We thoroughly present Stephanie. Tailored automatic and human evaluations are conducted to assess its effectiveness compared to the traditional single-step dialogue paradigm. We will release code, Stephanie datasets, and Stephanie LLMs to facilitate the future of chatbot eras.
Abstract:While Large Language Models (LLMs) have demonstrated exceptional multitasking abilities, fine-tuning these models on downstream, domain-specific datasets is often necessary to yield superior performance on test sets compared to their counterparts without fine-tuning. However, the comprehensive effects of fine-tuning on the LLMs' generalization ability are not fully understood. This paper delves into the differences between original, unmodified LLMs and their fine-tuned variants. Our primary investigation centers on whether fine-tuning affects the generalization ability intrinsic to LLMs. To elaborate on this, we conduct extensive experiments across five distinct language tasks on various datasets. Our main findings reveal that models fine-tuned on generation and classification tasks exhibit dissimilar behaviors in generalizing to different domains and tasks. Intriguingly, we observe that integrating the in-context learning strategy during fine-tuning on generation tasks can enhance the model's generalization ability. Through this systematic investigation, we aim to contribute valuable insights into the evolving landscape of fine-tuning practices for LLMs.
Abstract:As the typical retraining paradigm is unacceptably time- and resource-consuming, researchers are turning to model editing in order to seek an effective, consecutive, and batch-supportive way to edit the model behavior directly. Despite all these practical expectations, existing model editing methods fail to realize all of them. Furthermore, the memory demands for such succession-supportive model editing approaches tend to be prohibitive, frequently necessitating an external memory that grows incrementally over time. To cope with these challenges, we propose COMEBA-HK, a model editing method that is both consecutive and batch-supportive. COMEBA-HK is memory-friendly as it only needs a small amount of it to store several hook layers with updated weights. Experimental results demonstrate the superiority of our method over other batch-supportive model editing methods under both single-round and consecutive batch editing scenarios. Extensive analyses of COMEBA-HK have been conducted to verify the stability of our method over 1) the number of consecutive steps and 2) the number of editing instance.
Abstract:We are currently in an era of fierce competition among various large language models (LLMs) continuously pushing the boundaries of benchmark performance. However, genuinely assessing the capabilities of these LLMs has become a challenging and critical issue due to potential data contamination, and it wastes dozens of time and effort for researchers and engineers to download and try those contaminated models. To save our precious time, we propose a novel and useful method, Clean-Eval, which mitigates the issue of data contamination and evaluates the LLMs in a cleaner manner. Clean-Eval employs an LLM to paraphrase and back-translate the contaminated data into a candidate set, generating expressions with the same meaning but in different surface forms. A semantic detector is then used to filter the generated low-quality samples to narrow down this candidate set. The best candidate is finally selected from this set based on the BLEURT score. According to human assessment, this best candidate is semantically similar to the original contamination data but expressed differently. All candidates can form a new benchmark to evaluate the model. Our experiments illustrate that Clean-Eval substantially restores the actual evaluation results on contaminated LLMs under both few-shot learning and fine-tuning scenarios.
Abstract:Large language models (LLMs) have demonstrated exceptional performance in planning the use of various functional tools, such as calculators and retrievers, particularly in question-answering tasks. In this paper, we expand the definition of these tools, centering on conceptual tools within the context of dialogue systems. A conceptual tool specifies a cognitive concept that aids systematic or investigative thought. These conceptual tools play important roles in practice, such as multiple psychological or tutoring strategies being dynamically applied in a single turn to compose helpful responses. To further enhance the reasoning and planning capability of LLMs with these conceptual tools, we introduce a multi-persona collaboration framework: Think-Plan-Execute (TPE). This framework decouples the response generation process into three distinct roles: Thinker, Planner, and Executor. Specifically, the Thinker analyzes the internal status exhibited in the dialogue context, such as user emotions and preferences, to formulate a global guideline. The Planner then generates executable plans to call different conceptual tools (e.g., sources or strategies), while the Executor compiles all intermediate results into a coherent response. This structured approach not only enhances the explainability and controllability of responses but also reduces token redundancy. We demonstrate the effectiveness of TPE across various dialogue response generation tasks, including multi-source (FoCus) and multi-strategy interactions (CIMA and PsyQA). This reveals its potential to handle real-world dialogue interactions that require more complicated tool learning beyond just functional tools. The full code and data will be released for reproduction.
Abstract:Large language models (LLMs) have shown promising performance on various NLP tasks via task prompting. And their performance can be further improved by appending task demonstrations to the head of the prompt. And usually, a better performance can be achieved with more demonstrations. However, asking the users to write the demonstrations can be cumbersome. As a simple yet cost-effective workaround, this paper proposes a novel method called EPA (\textbf{E}asy \textbf{P}rompt \textbf{A}ugmentation)\footnote{While this paper considers augmenting prompts via demonstrations, we name it EPA as the name EDA is already taken by a well-known NLP method \citep{wei-zou-2019-eda}.} that effectively minimizes user efforts in writing demonstrations while improving the model performance at the same time. EPA achieves these goals by automatically augmenting the demonstrations with multiple sources/targets, where each of them paraphrases each other. This is well motivated as augmenting data via paraphrasing effectively improves neural language models. EPA thus employs paraphrasing as an augmentation method for in-context learning. Extensive experiments indicate that EPA effectively improves both NLU and NLG tasks, covering from natural language inference to machine translation in translating tens of languages.\footnote{Code and data will be released upon publication.}
Abstract:Most research about natural language generation (NLG) relies on evaluation benchmarks with limited references for a sample, which may result in poor correlations with human judgements. The underlying reason is that one semantic meaning can actually be expressed in different forms, and the evaluation with a single or few references may not accurately reflect the quality of the model's hypotheses. To address this issue, this paper presents a novel method, named Para-Ref, to enhance existing evaluation benchmarks by enriching the number of references. We leverage large language models (LLMs) to paraphrase a single reference into multiple high-quality ones in diverse expressions. Experimental results on representative NLG tasks of machine translation, text summarization, and image caption demonstrate that our method can effectively improve the correlation with human evaluation for sixteen automatic evaluation metrics by +7.82% in ratio. We release the code and data at https://github.com/RUCAIBox/Para-Ref.