Alert button
Picture for Asli Celikyilmaz

Asli Celikyilmaz

Alert button

The ART of LLM Refinement: Ask, Refine, and Trust

Nov 14, 2023
Kumar Shridhar, Koustuv Sinha, Andrew Cohen, Tianlu Wang, Ping Yu, Ram Pasunuru, Mrinmaya Sachan, Jason Weston, Asli Celikyilmaz

In recent years, Large Language Models (LLMs) have demonstrated remarkable generative abilities, but can they judge the quality of their own generations? A popular concept, referred to as self-refinement, postulates that LLMs can detect and correct the errors in their generations when asked to do so. However, recent empirical evidence points in the opposite direction, suggesting that LLMs often struggle to accurately identify errors when reasoning is involved. To address this, we propose a reasoning with refinement objective called ART: Ask, Refine, and Trust, which asks necessary questions to decide when an LLM should refine its output, and either affirm or withhold trust in its refinement by ranking the refinement and the initial prediction. On two multistep reasoning tasks of mathematical word problems (GSM8K) and question answering (StrategyQA), ART achieves a performance gain of +5 points over self-refinement baselines, while using a much smaller model as the decision maker. We also demonstrate the benefit of using smaller models to make refinement decisions as a cost-effective alternative to fine-tuning a larger model.

Viaarxiv icon

Branch-Solve-Merge Improves Large Language Model Evaluation and Generation

Oct 23, 2023
Swarnadeep Saha, Omer Levy, Asli Celikyilmaz, Mohit Bansal, Jason Weston, Xian Li

Large Language Models (LLMs) are frequently used for multi-faceted language generation and evaluation tasks that involve satisfying intricate user constraints or taking into account multiple aspects and criteria. However, their performance can fall short, due to the model's lack of coherence and inability to plan and decompose the problem. We propose Branch-Solve-Merge (BSM), a Large Language Model program (Schlag et al., 2023) for tackling such challenging natural language tasks. It consists of branch, solve, and merge modules that are parameterized with specific prompts to the base LLM. These three modules plan a decomposition of the task into multiple parallel sub-tasks, independently solve them, and fuse the solutions to the sub-tasks. We apply our method to the tasks of LLM response evaluation and constrained text generation and evaluate its effectiveness with multiple LLMs, including Vicuna, LLaMA-2-chat, and GPT-4. BSM improves the evaluation correctness and consistency for each LLM by enhancing human-LLM agreement by up to 26%, reducing length and pairwise position biases by up to 50%, and allowing LLaMA-2-chat to match or outperform GPT-4 on most domains. On the constraint story generation task, BSM improves the coherence of the stories while also improving constraint satisfaction by 12%.

* 22 pages, 7 figures, 10 tables 
Viaarxiv icon

Crystal: Introspective Reasoners Reinforced with Self-Feedback

Oct 18, 2023
Jiacheng Liu, Ramakanth Pasunuru, Hannaneh Hajishirzi, Yejin Choi, Asli Celikyilmaz

Extensive work has shown that the performance and interpretability of commonsense reasoning can be improved via knowledge-augmented reasoning methods, where the knowledge that underpins the reasoning process is explicitly verbalized and utilized. However, existing implementations, including "chain-of-thought" and its variants, fall short in capturing the introspective nature of knowledge required in commonsense reasoning, and in accounting for the mutual adaptation between the generation and utilization of knowledge. We propose a novel method to develop an introspective commonsense reasoner, Crystal. To tackle commonsense problems, it first introspects for knowledge statements related to the given question, and subsequently makes an informed prediction that is grounded in the previously introspected knowledge. The knowledge introspection and knowledge-grounded reasoning modes of the model are tuned via reinforcement learning to mutually adapt, where the reward derives from the feedback given by the model itself. Experiments show that Crystal significantly outperforms both the standard supervised finetuning and chain-of-thought distilled methods, and enhances the transparency of the commonsense reasoning process. Our work ultimately validates the feasibility and potential of reinforcing a neural model with self-feedback.

* EMNLP 2023 main conference 
Viaarxiv icon

Sub-network Discovery and Soft-masking for Continual Learning of Mixed Tasks

Oct 13, 2023
Zixuan Ke, Bing Liu, Wenhan Xiong, Asli Celikyilmaz, Haoran Li

Continual learning (CL) has two main objectives: preventing catastrophic forgetting (CF) and encouraging knowledge transfer (KT). The existing literature mainly focused on overcoming CF. Some work has also been done on KT when the tasks are similar. To our knowledge, only one method has been proposed to learn a sequence of mixed tasks. However, these techniques still suffer from CF and/or limited KT. This paper proposes a new CL method to achieve both. It overcomes CF by isolating the knowledge of each task via discovering a subnetwork for it. A soft-masking mechanism is also proposed to preserve the previous knowledge and to enable the new task to leverage the past knowledge to achieve KT. Experiments using classification, generation, information extraction, and their mixture (i.e., heterogeneous tasks) show that the proposed method consistently outperforms strong baselines.

* EMNLP 2023 (findings)  
Viaarxiv icon

Walking Down the Memory Maze: Beyond Context Limit through Interactive Reading

Oct 08, 2023
Howard Chen, Ramakanth Pasunuru, Jason Weston, Asli Celikyilmaz

Large language models (LLMs) have advanced in large strides due to the effectiveness of the self-attention mechanism that processes and compares all tokens at once. However, this mechanism comes with a fundamental issue -- the predetermined context window is bound to be limited. Despite attempts to extend the context window through methods like extrapolating the positional embedding, using recurrence, or selectively retrieving essential parts of the long sequence, long-text understanding continues to be a challenge. We propose an alternative approach which instead treats the LLM as an interactive agent, allowing it to decide how to read the text via iterative prompting. We introduce MemWalker, a method that first processes the long context into a tree of summary nodes. Upon receiving a query, the model navigates this tree in search of relevant information, and responds once it gathers sufficient information. On long-text question answering tasks our method outperforms baseline approaches that use long context windows, recurrence, and retrieval. We show that, beyond effective reading, MemWalker enhances explainability by highlighting the reasoning steps as it interactively reads the text; pinpointing the relevant text segments related to the query.

Viaarxiv icon

Resprompt: Residual Connection Prompting Advances Multi-Step Reasoning in Large Language Models

Oct 07, 2023
Song Jiang, Zahra Shakeri, Aaron Chan, Maziar Sanjabi, Hamed Firooz, Yinglong Xia, Bugra Akyildiz, Yizhou Sun, Jinchao Li, Qifan Wang, Asli Celikyilmaz

Figure 1 for Resprompt: Residual Connection Prompting Advances Multi-Step Reasoning in Large Language Models
Figure 2 for Resprompt: Residual Connection Prompting Advances Multi-Step Reasoning in Large Language Models
Figure 3 for Resprompt: Residual Connection Prompting Advances Multi-Step Reasoning in Large Language Models
Figure 4 for Resprompt: Residual Connection Prompting Advances Multi-Step Reasoning in Large Language Models

Chain-of-thought (CoT) prompting, which offers step-by-step problem-solving rationales, has impressively unlocked the reasoning potential of large language models (LLMs). Yet, the standard CoT is less effective in problems demanding multiple reasoning steps. This limitation arises from the complex reasoning process in multi-step problems: later stages often depend on the results of several steps earlier, not just the results of the immediately preceding step. Such complexities suggest the reasoning process is naturally represented as a graph. The almost linear and straightforward structure of CoT prompting, however, struggles to capture this complex reasoning graph. To address this challenge, we propose Residual Connection Prompting (RESPROMPT), a new prompting strategy that advances multi-step reasoning in LLMs. Our key idea is to reconstruct the reasoning graph within prompts. We achieve this by integrating necessary connections-links present in the reasoning graph but missing in the linear CoT flow-into the prompts. Termed "residual connections", these links are pivotal in morphing the linear CoT structure into a graph representation, effectively capturing the complex reasoning graphs inherent in multi-step problems. We evaluate RESPROMPT on six benchmarks across three diverse domains: math, sequential, and commonsense reasoning. For the open-sourced LLaMA family of models, RESPROMPT yields a significant average reasoning accuracy improvement of 12.5% on LLaMA-65B and 6.8% on LLaMA2-70B. Breakdown analysis further highlights RESPROMPT particularly excels in complex multi-step reasoning: for questions demanding at least five reasoning steps, RESPROMPT outperforms the best CoT based benchmarks by a remarkable average improvement of 21.1% on LLaMA-65B and 14.3% on LLaMA2-70B. Through extensive ablation studies and analyses, we pinpoint how to most effectively build residual connections.

* 29 pages 
Viaarxiv icon

DOMINO: A Dual-System for Multi-step Visual Language Reasoning

Oct 04, 2023
Peifang Wang, Olga Golovneva, Armen Aghajanyan, Xiang Ren, Muhao Chen, Asli Celikyilmaz, Maryam Fazel-Zarandi

Figure 1 for DOMINO: A Dual-System for Multi-step Visual Language Reasoning
Figure 2 for DOMINO: A Dual-System for Multi-step Visual Language Reasoning
Figure 3 for DOMINO: A Dual-System for Multi-step Visual Language Reasoning
Figure 4 for DOMINO: A Dual-System for Multi-step Visual Language Reasoning

Visual language reasoning requires a system to extract text or numbers from information-dense images like charts or plots and perform logical or arithmetic reasoning to arrive at an answer. To tackle this task, existing work relies on either (1) an end-to-end vision-language model trained on a large amount of data, or (2) a two-stage pipeline where a captioning model converts the image into text that is further read by another large language model to deduce the answer. However, the former approach forces the model to answer a complex question with one single step, and the latter approach is prone to inaccurate or distracting information in the converted text that can confuse the language model. In this work, we propose a dual-system for multi-step multimodal reasoning, which consists of a "System-1" step for visual information extraction and a "System-2" step for deliberate reasoning. Given an input, System-2 breaks down the question into atomic sub-steps, each guiding System-1 to extract the information required for reasoning from the image. Experiments on chart and plot datasets show that our method with a pre-trained System-2 module performs competitively compared to prior work on in- and out-of-distribution data. By fine-tuning the System-2 module (LLaMA-2 70B) on only a small amount of data on multi-step reasoning, the accuracy of our method is further improved and surpasses the best fully-supervised end-to-end approach by 5.7% and a pipeline approach with FlanPaLM (540B) by 7.5% on a challenging dataset with human-authored questions.

Viaarxiv icon

Making PPO even better: Value-Guided Monte-Carlo Tree Search decoding

Sep 26, 2023
Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, Yejin Choi, Hannaneh Hajishirzi, Asli Celikyilmaz

Inference-time search algorithms such as Monte-Carlo Tree Search (MCTS) may seem unnecessary when generating natural language text based on state-of-the-art reinforcement learning such as Proximal Policy Optimization (PPO). In this paper, we demonstrate that it is possible to get extra mileage out of PPO by integrating MCTS on top. The key idea is not to throw out the value network, a byproduct of PPO training for evaluating partial output sequences, when decoding text out of the policy network. More concretely, we present a novel value-guided decoding algorithm called PPO-MCTS, which can integrate the value network from PPO to work closely with the policy network during inference-time generation. Compared to prior approaches based on MCTS for controlled text generation, the key strength of our approach is to reduce the fundamental mismatch of the scoring mechanisms of the partial outputs between training and test. Evaluation on four text generation tasks demonstrate that PPO-MCTS greatly improves the preferability of generated text compared to the standard practice of using only the PPO policy. Our results demonstrate the promise of search algorithms even on top of the aligned language models from PPO, and the under-explored benefit of the value network.

Viaarxiv icon

Chain-of-Verification Reduces Hallucination in Large Language Models

Sep 25, 2023
Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli Celikyilmaz, Jason Weston

Figure 1 for Chain-of-Verification Reduces Hallucination in Large Language Models
Figure 2 for Chain-of-Verification Reduces Hallucination in Large Language Models
Figure 3 for Chain-of-Verification Reduces Hallucination in Large Language Models
Figure 4 for Chain-of-Verification Reduces Hallucination in Large Language Models

Generation of plausible yet incorrect factual information, termed hallucination, is an unsolved issue in large language models. We study the ability of language models to deliberate on the responses they give in order to correct their mistakes. We develop the Chain-of-Verification (CoVe) method whereby the model first (i) drafts an initial response; then (ii) plans verification questions to fact-check its draft; (iii) answers those questions independently so the answers are not biased by other responses; and (iv) generates its final verified response. In experiments, we show CoVe decreases hallucinations across a variety of tasks, from list-based questions from Wikidata, closed book MultiSpanQA and longform text generation.

Viaarxiv icon