Abstract:Training robotic policies directly in the real world is expensive and unscalable. Although generative simulation enables large-scale data synthesis, current approaches often fail to generate logically coherent long-horizon tasks and struggle with dynamic physical uncertainties due to open-loop execution. To address these challenges, we propose Affordance-Graphed Task Worlds (AGT-World), a unified framework that autonomously constructs interactive simulated environments and corresponding robot task policies based on real-world observations. Unlike methods relying on random proposals or static replication, AGT-World formalizes the task space as a structured graph, enabling the precise, hierarchical decomposition of complex goals into theoretically grounded atomic primitives. Furthermore, we introduce a Self-Evolution mechanism with hybrid feedback to autonomously refine policies, combining Vision-Language Model reasoning and geometric verification. Extensive experiments demonstrate that our method significantly outperforms in success rates and generalization, achieving a self-improving cycle of proposal, execution, and correction for scalable robot learning.
Abstract:Vision-Language-Action (VLA) models are promising for generalist robot manipulation but remain brittle in out-of-distribution (OOD) settings, especially with limited real-robot data. To resolve the generalization bottleneck, we introduce a hierarchical Vision-Language-Action framework \our{} that leverages the generalization of large-scale pre-trained world model for robust and generalizable VIsual Subgoal TAsk decomposition VISTA. Our hierarchical framework \our{} consists of a world model as the high-level planner and a VLA as the low-level executor. The high-level world model first divides manipulation tasks into subtask sequences with goal images, and the low-level policy follows the textual and visual guidance to generate action sequences. Compared to raw textual goal specification, these synthesized goal images provide visually and physically grounded details for low-level policies, making it feasible to generalize across unseen objects and novel scenarios. We validate both visual goal synthesis and our hierarchical VLA policies in massive out-of-distribution scenarios, and the performance of the same-structured VLA in novel scenarios could boost from 14% to 69% with the guidance generated by the world model. Results demonstrate that our method outperforms previous baselines with a clear margin, particularly in out-of-distribution scenarios. Project page: \href{https://vista-wm.github.io/}{https://vista-wm.github.io}
Abstract:Real-world contact-rich manipulation demands robots to perceive temporal tactile feedback, capture subtle surface deformations, and reason about object properties as well as force dynamics. Although optical tactile sensors are uniquely capable of providing such rich information, existing tactile datasets and models remain limited. These resources primarily focus on object-level attributes (e.g., material) while largely overlooking fine-grained tactile temporal dynamics during physical interactions. We consider that advancing dynamic tactile perception requires a systematic hierarchy of dynamic perception capabilities to guide both data collection and model design. To address the lack of tactile data with rich dynamic information, we present ToucHD, a large-scale hierarchical tactile dataset spanning tactile atomic actions, real-world manipulations, and touch-force paired data. Beyond scale, ToucHD establishes a comprehensive tactile dynamic data ecosystem that explicitly supports hierarchical perception capabilities from the data perspective. Building on it, we propose AnyTouch 2, a general tactile representation learning framework for diverse optical tactile sensors that unifies object-level understanding with fine-grained, force-aware dynamic perception. The framework captures both pixel-level and action-specific deformations across frames, while explicitly modeling physical force dynamics, thereby learning multi-level dynamic perception capabilities from the model perspective. We evaluate our model on benchmarks that covers static object properties and dynamic physical attributes, as well as real-world manipulation tasks spanning multiple tiers of dynamic perception capabilities-from basic object-level understanding to force-aware dexterous manipulation. Experimental results demonstrate consistent and strong performance across sensors and tasks.
Abstract:We introduce RoboBrain 2.5, a next-generation embodied AI foundation model that advances general perception, spatial reasoning, and temporal modeling through extensive training on high-quality spatiotemporal supervision. Building upon its predecessor, RoboBrain 2.5 introduces two major capability upgrades. Specifically, it unlocks Precise 3D Spatial Reasoning by shifting from 2D pixel-relative grounding to depth-aware coordinate prediction and absolute metric constraint comprehension, generating complete 3D manipulation traces as ordered keypoint sequences under physical constraints. Complementing this spatial precision, the model establishes Dense Temporal Value Estimation that provides dense, step-aware progress prediction and execution state understanding across varying viewpoints, producing stable feedback signals for downstream learning. Together, these upgrades extend the framework toward more physically grounded and execution-aware embodied intelligence for complex, fine-grained manipulation. The code and checkpoints are available at project website: https://superrobobrain.github.io
Abstract:The primary obstacle for applying reinforcement learning (RL) to real-world robotics is the design of effective reward functions. While recently learning-based Process Reward Models (PRMs) are a promising direction, they are often hindered by two fundamental limitations: their reward models lack step-aware understanding and rely on single-view perception, leading to unreliable assessments of fine-grained manipulation progress; and their reward shaping procedures are theoretically unsound, often inducing a semantic trap that misguides policy optimization. To address these, we introduce Dopamine-Reward, a novel reward modeling method for learning a general-purpose, step-aware process reward model from multi-view inputs. At its core is our General Reward Model (GRM), trained on a vast 3,400+ hour dataset, which leverages Step-wise Reward Discretization for structural understanding and Multi-Perspective Reward Fusion to overcome perceptual limitations. Building upon Dopamine-Reward, we propose Dopamine-RL, a robust policy learning framework that employs a theoretically-sound Policy-Invariant Reward Shaping method, which enables the agent to leverage dense rewards for efficient self-improvement without altering the optimal policy, thereby fundamentally avoiding the semantic trap. Extensive experiments across diverse simulated and real-world tasks validate our approach. GRM achieves state-of-the-art accuracy in reward assessment, and Dopamine-RL built on GRM significantly improves policy learning efficiency. For instance, after GRM is adapted to a new task in a one-shot manner from a single expert trajectory, the resulting reward model enables Dopamine-RL to improve the policy from near-zero to 95% success with only 150 online rollouts (approximately 1 hour of real robot interaction), while retaining strong generalization across tasks. Project website: https://robo-dopamine.github.io