Abstract:Wireless signal recognition (WSR) is crucial in modern and future wireless communication networks since it aims to identify properties of the received signal. Although many deep learning-based WSR models have been developed, they still rely on a large amount of labeled training data. Thus, they cannot tackle the few-sample problem in the practically and dynamically changing wireless communication environment. To overcome this challenge, a novel SSwsrNet framework is proposed by using the deep residual shrinkage network (DRSN) and semi-supervised learning. The DRSN can learn discriminative features from noisy signals. Moreover, a modular semi-supervised learning method that combines labeled and unlabeled data using MixMatch is exploited to further improve the classification performance under few-sample conditions. Extensive simulation results on automatic modulation classification (AMC) and wireless technology classification (WTC) demonstrate that our proposed WSR scheme can achieve better performance than the benchmark schemes in terms of classification accuracy. This novel method enables more robust and adaptive signal recognition for next-generation wireless networks.
Abstract:Automatic modulation classification (AMC) is a promising technology to realize intelligent wireless communications in the sixth generation (6G) wireless communication networks. Recently, many data-and-knowledge dual-driven AMC schemes have achieved high accuracy. However, most of these schemes focus on generating additional prior knowledge or features of blind signals, which consumes longer computation time and ignores the interpretability of the model learning process. To solve these problems, we propose a novel knowledge graph (KG) driven AMC (KGAMC) scheme by training the networks under the guidance of domain knowledge. A modulation knowledge graph (MKG) with the knowledge of modulation technical characteristics and application scenarios is constructed and a relation-graph convolution network (RGCN) is designed to extract knowledge of the MKG. This knowledge is utilized to facilitate the signal features separation of the data-oriented model by implementing a specialized feature aggregation method. Simulation results demonstrate that KGAMC achieves superior classification performance compared to other benchmark schemes, especially in the low signal-to-noise ratio (SNR) range. Furthermore, the signal features of the high-order modulation are more discriminative, thus reducing the confusion between similar signals.
Abstract:Unmanned aerial vehicles (UAVs) are widely used for object detection. However, the existing UAV-based object detection systems are subject to the serious challenge, namely, the finite computation, energy and communication resources, which limits the achievable detection performance. In order to overcome this challenge, a UAV cognitive semantic communication system is proposed by exploiting knowledge graph. Moreover, a multi-scale compression network is designed for semantic compression to reduce data transmission volume while guaranteeing the detection performance. Furthermore, an object detection scheme is proposed by using the knowledge graph to overcome channel noise interference and compression distortion. Simulation results conducted on the practical aerial image dataset demonstrate that compared to the benchmark systems, our proposed system has superior detection accuracy, communication robustness and computation efficiency even under high compression rates and low signal-to-noise ratio (SNR) conditions.
Abstract:Secure communications are of paramount importance in spectrum sharing networks due to the allocation and sharing characteristics of spectrum resources. To further explore the potential of intelligent reflective surfaces (IRSs) in enhancing spectrum sharing and secure transmission performance, a multiple intelligent reflection surface (multi-IRS)-assisted sensing-enhanced wideband spectrum sharing network is investigated by considering physical layer security techniques. An intelligent resource allocation scheme based on double deep Q networks (D3QN) algorithm and soft Actor-Critic (SAC) algorithm is proposed to maximize the secure transmission rate of the secondary network by jointly optimizing IRS pairings, subchannel assignment, transmit beamforming of the secondary base station, reflection coefficients of IRSs and the sensing time. To tackle the sparse reward problem caused by a significant amount of reflection elements of multiple IRSs, the method of hierarchical reinforcement learning is exploited. An alternative optimization (AO)-based conventional mathematical scheme is introduced to verify the computational complexity advantage of our proposed intelligent scheme. Simulation results demonstrate the efficiency of our proposed intelligent scheme as well as the superiority of multi-IRS design in enhancing secrecy rate and spectrum utilization. It is shown that inappropriate deployment of IRSs can reduce the security performance with the presence of multiple eavesdroppers (Eves), and the arrangement of IRSs deserves further consideration.
Abstract:Semantic communication, recognized as a promising technology for future intelligent applications, has received widespread research attention. Despite the potential of semantic communication to enhance transmission reliability, especially in low signal-to-noise (SNR) environments, the critical issue of resource allocation and compatibility in the dynamic wireless environment remains largely unexplored. In this paper, we propose an adaptive semantic resource allocation paradigm with semantic-bit quantization (SBQ) compatibly for existing wireless communications, where the inaccurate environment perception introduced by the additional mapping relationship between semantic metrics and transmission metrics is solved. In order to investigate the performance of semantic communication networks, the quality of service for semantic communication (SC-QoS), including the semantic quantization efficiency (SQE) and transmission latency, is proposed for the first time. A problem of maximizing the overall effective SC-QoS is formulated by jointly optimizing the transmit beamforming of the base station, the bits for semantic representation, the subchannel assignment, and the bandwidth resource allocation. To address the non-convex formulated problem, an intelligent resource allocation scheme is proposed based on a hybrid deep reinforcement learning (DRL) algorithm, where the intelligent agent can perceive both semantic tasks and dynamic wireless environments. Simulation results demonstrate that our design can effectively combat semantic noise and achieve superior performance in wireless communications compared to several benchmark schemes. Furthermore, compared to mapping-guided paradigm based resource allocation schemes, our proposed adaptive scheme can achieve up to 13% performance improvement in terms of SC-QoS.
Abstract:Wireless powered mobile edge computing (WP-MEC) has been recognized as a promising solution to enhance the computational capability and sustainable energy supply for low-power wireless devices (WDs). However, when the communication links between the hybrid access point (HAP) and WDs are hostile, the energy transfer efficiency and task offloading rate are compromised. To tackle this problem, we propose to employ multiple intelligent reflecting surfaces (IRSs) to WP-MEC networks. Based on the practical IRS phase shift model, we formulate a total computation rate maximization problem by jointly optimizing downlink/uplink IRSs passive beamforming, downlink energy beamforming and uplink multi-user detection (MUD) vector at HAPs, task offloading power and local computing frequency of WDs, and the time slot allocation. Specifically, we first derive the optimal time allocation for downlink wireless energy transmission (WET) to IRSs and the corresponding energy beamforming. Next, with fixed time allocation for the downlink WET to WDs, the original optimization problem can be divided into two independent subproblems. For the WD charging subproblem, the optimal IRSs passive beamforming is derived by utilizing the successive convex approximation (SCA) method and the penalty-based optimization technique, and for the offloading computing subproblem, we propose a joint optimization framework based on the fractional programming (FP) method. Finally, simulation results validate that our proposed optimization method based on the practical phase shift model can achieve a higher total computation rate compared to the baseline schemes.
Abstract:Resource allocation is of crucial importance in wireless communications. However, it is extremely challenging to design efficient resource allocation schemes for future wireless communication networks since the formulated resource allocation problems are generally non-convex and consist of various coupled variables. Moreover, the dynamic changes of practical wireless communication environment and user service requirements thirst for efficient real-time resource allocation. To tackle these issues, a novel partially observable deep multi-agent active inference (PODMAI) framework is proposed for realizing intelligent resource allocation. A belief based learning method is exploited for updating the policy by minimizing the variational free energy. A decentralized training with a decentralized execution multi-agent strategy is designed to overcome the limitations of the partially observable state information. Exploited the proposed framework, an intelligent spectrum allocation and trajectory optimization scheme is developed for a spectrum sharing unmanned aerial vehicle (UAV) network with dynamic transmission rate requirements as an example. Simulation results demonstrate that our proposed framework can significantly improve the sum transmission rate of the secondary network compared to various benchmark schemes. Moreover, the convergence speed of the proposed PODMAI is significantly improved compared with the conventional reinforcement learning framework. Overall, our proposed framework can enrich the intelligent resource allocation frameworks and pave the way for realizing real-time resource allocation.
Abstract:Unmanned aerial vehicle (UAV) communication is of crucial importance for diverse practical applications. However, it is susceptible to the severe spectrum scarcity problem and interference since it operates in the unlicensed spectrum band. In order to tackle those issues, a dynamic spectrum sharing network is considered with the anti-jamming technique. Moreover, an intelligent spectrum allocation and trajectory optimization scheme is proposed to adapt to diverse jamming models by exploiting our designed novel online-offline multi-agent actor-critic and deep deterministic policy-gradient framework. Simulation results demonstrate the high efficiency of our proposed framework. It is also shown that our proposed scheme achieves the largest transmission rate among all benchmark schemes.
Abstract:Semantic communication is envisioned as a promising technique to break through the Shannon limit. However, semantic inference and semantic error correction have not been well studied. Moreover, error correction methods of existing semantic communication frameworks are inexplicable and inflexible, which limits the achievable performance. In this paper, to tackle this issue, a knowledge graph is exploited to develop semantic communication systems. Two cognitive semantic communication frameworks are proposed for the single-user and multiple-user communication scenarios. Moreover, a simple, general, and interpretable semantic alignment algorithm for semantic information detection is proposed. Furthermore, an effective semantic correction algorithm is proposed by mining the inference rule from the knowledge graph. Additionally, the pre-trained model is fine-tuned to recover semantic information. For the multi-user cognitive semantic communication system, a message recovery algorithm is proposed to distinguish messages of different users by matching the knowledge level between the source and the destination. Extensive simulation results conducted on a public dataset demonstrate that our proposed single-user and multi-user cognitive semantic communication systems are superior to benchmark communication systems in terms of the data compression rate and communication reliability. Finally, we present realistic single-user and multi-user cognitive semantic communication systems results by building a software-defined radio prototype system.
Abstract:In this paper, a hybrid IRS-aided amplify-and-forward (AF) relay wireless network is considered, where an optimization problem is formulated to maximize signal-to-noise ratio (SNR) by jointly optimizing the beamforming matrix at AF relay and the reflecting coefficient matrices at IRS subject to the constraints of transmit power budgets at the source/AF relay/hybrid IRS and that of unit-modulus for passive IRS phase shifts. To achieve high rate performance and extend the coverage range, a high-performance method based on semidefinite relaxation and fractional programming (HP-SDR-FP) algorithm is presented. Due to its extremely high complexity, a low-complexity method based on successive convex approximation and FP (LC-SCA-FP) algorithm is put forward. To further reduce the complexity, a lower-complexity method based on whitening filter, general power iterative and generalized Rayleigh-Ritz (WF-GPI-GRR) is proposed, where different from the above two methods, it is assumed that the amplifying coefficient of each active IRS element is equal, and the corresponding analytical solution of the amplifying coefficient can be obtained according to the transmit powers at AF relay and hybrid IRS. Simulation results show that the proposed three methods can greatly improve the rate performance compared to the existing networks, such as the passive IRS-aided AF relay and only AF relay network. In particular, a 50.0% rate gain over the existing networks is approximately achieved in the high power budget region of hybrid IRS. Moreover, it is verified that the proposed three efficient beamforming methods have an increasing order in rate performance: WF-GPI-GRR, LC-SCA-FP and HP-SDR-FP.