Abstract:Chain-of-thought prompting has demonstrated great success in facilitating the reasoning abilities of large language models. In this work, we explore how these enhanced reasoning abilities can be exploited to improve the robustness of large language models in tasks that are not necessarily reasoning-focused. In particular, we show how a wide range of large language models exhibit significantly improved robustness against reference corruption using a simple method called chain-of-defensive-thought, where only a few exemplars with structured and defensive reasoning are provided as demonstrations. Empirically, the improvements can be astounding, especially given the simplicity and applicability of the method. For example, in the Natural Questions task, the accuracy of GPT-4o degrades from 60% to as low as 3% with standard prompting when 1 out of 10 references provided is corrupted with prompt injection attacks. In contrast, GPT-4o using chain-of-defensive-thought prompting maintains an accuracy of 50%.
Abstract:Neural networks that map between low dimensional spaces are ubiquitous in computer graphics and scientific computing; however, in their naive implementation, they are unable to learn high frequency information. We present a comprehensive analysis comparing the two most common techniques for mitigating this spectral bias: Fourier feature encodings (FFE) and multigrid parametric encodings (MPE). FFEs are seen as the standard for low dimensional mappings, but MPEs often outperform them and learn representations with higher resolution and finer detail. FFE's roots in the Fourier transform, make it susceptible to aliasing if pushed too far, while MPEs, which use a learned grid structure, have no such limitation. To understand the difference in performance, we use the neural tangent kernel (NTK) to evaluate these encodings through the lens of an analogous kernel regression. By finding a lower bound on the smallest eigenvalue of the NTK, we prove that MPEs improve a network's performance through the structure of their grid and not their learnable embedding. This mechanism is fundamentally different from FFEs, which rely solely on their embedding space to improve performance. Results are empirically validated on a 2D image regression task using images taken from 100 synonym sets of ImageNet and 3D implicit surface regression on objects from the Stanford graphics dataset. Using peak signal-to-noise ratio (PSNR) and multiscale structural similarity (MS-SSIM) to evaluate how well fine details are learned, we show that the MPE increases the minimum eigenvalue by 8 orders of magnitude over the baseline and 2 orders of magnitude over the FFE. The increase in spectrum corresponds to a 15 dB (PSNR) / 0.65 (MS-SSIM) increase over baseline and a 12 dB (PSNR) / 0.33 (MS-SSIM) increase over the FFE.
Abstract:Fact-checking tabular data is essential for ensuring the accuracy of structured information. However, existing methods often rely on black-box models with opaque reasoning. We introduce RePanda, a structured fact verification approach that translates claims into executable pandas queries, enabling interpretable and verifiable reasoning. To train RePanda, we construct PanTabFact, a structured dataset derived from the TabFact train set, where claims are paired with executable queries generated using DeepSeek-Chat and refined through automated error correction. Fine-tuning DeepSeek-coder-7B-instruct-v1.5 on PanTabFact, RePanda achieves 84.09% accuracy on the TabFact test set. To evaluate Out-of-Distribution (OOD) generalization, we interpret question-answer pairs from WikiTableQuestions as factual claims and refer to this dataset as WikiFact. Without additional fine-tuning, RePanda achieves 84.72% accuracy on WikiFact, significantly outperforming all other baselines and demonstrating strong OOD robustness. Notably, these results closely match the zero-shot performance of DeepSeek-Chat (671B), indicating that our fine-tuning approach effectively distills structured reasoning from a much larger model into a compact, locally executable 7B model. Beyond fact verification, RePanda extends to tabular question answering by generating executable queries that retrieve precise answers. To support this, we introduce PanWiki, a dataset mapping WikiTableQuestions to pandas queries. Fine-tuning on PanWiki, RePanda achieves 75.1% accuracy in direct answer retrieval. These results highlight the effectiveness of structured execution-based reasoning for tabular verification and question answering. We have publicly released the dataset on Hugging Face at datasets/AtoosaChegini/PanTabFact.
Abstract:Unimodal vision models are known to rely on spurious correlations, but it remains unclear to what extent Multimodal Large Language Models (MLLMs) exhibit similar biases despite language supervision. In this paper, we investigate spurious bias in MLLMs and introduce SpurLens, a pipeline that leverages GPT-4 and open-set object detectors to automatically identify spurious visual cues without human supervision. Our findings reveal that spurious correlations cause two major failure modes in MLLMs: (1) over-reliance on spurious cues for object recognition, where removing these cues reduces accuracy, and (2) object hallucination, where spurious cues amplify the hallucination by over 10x. We validate our findings in various MLLMs and datasets. Beyond diagnosing these failures, we explore potential mitigation strategies, such as prompt ensembling and reasoning-based prompting, and conduct ablation studies to examine the root causes of spurious bias in MLLMs. By exposing the persistence of spurious correlations, our study calls for more rigorous evaluation methods and mitigation strategies to enhance the reliability of MLLMs.
Abstract:The rise of foundation models has transformed machine learning research, prompting efforts to uncover their inner workings and develop more efficient and reliable applications for better control. While significant progress has been made in interpreting Large Language Models (LLMs), multimodal foundation models (MMFMs) - such as contrastive vision-language models, generative vision-language models, and text-to-image models - pose unique interpretability challenges beyond unimodal frameworks. Despite initial studies, a substantial gap remains between the interpretability of LLMs and MMFMs. This survey explores two key aspects: (1) the adaptation of LLM interpretability methods to multimodal models and (2) understanding the mechanistic differences between unimodal language models and crossmodal systems. By systematically reviewing current MMFM analysis techniques, we propose a structured taxonomy of interpretability methods, compare insights across unimodal and multimodal architectures, and highlight critical research gaps.
Abstract:The growing use of large language models (LLMs) for text generation has led to widespread concerns about AI-generated content detection. However, an overlooked challenge is AI-polished text, where human-written content undergoes subtle refinements using AI tools. This raises a critical question: should minimally polished text be classified as AI-generated? Misclassification can lead to false plagiarism accusations and misleading claims about AI prevalence in online content. In this study, we systematically evaluate eleven state-of-the-art AI-text detectors using our AI-Polished-Text Evaluation (APT-Eval) dataset, which contains $11.7K$ samples refined at varying AI-involvement levels. Our findings reveal that detectors frequently misclassify even minimally polished text as AI-generated, struggle to differentiate between degrees of AI involvement, and exhibit biases against older and smaller models. These limitations highlight the urgent need for more nuanced detection methodologies.
Abstract:Large language models are increasingly used to process documents and facilitate question-answering on them. In our paper, we extract mechanistic circuits for this real-world language modeling task: context-augmented language modeling for extractive question-answering (QA) tasks and understand the potential benefits of circuits towards downstream applications such as data attribution to context information. We extract circuits as a function of internal model components (e.g., attention heads, MLPs) using causal mediation analysis techniques. Leveraging the extracted circuits, we first understand the interplay between the model's usage of parametric memory and retrieved context towards a better mechanistic understanding of context-augmented language models. We then identify a small set of attention heads in our circuit which performs reliable data attribution by default, thereby obtaining attribution for free in just the model's forward pass. Using this insight, we then introduce ATTNATTRIB, a fast data attribution algorithm which obtains state-of-the-art attribution results across various extractive QA benchmarks. Finally, we show the possibility to steer the language model towards answering from the context, instead of the parametric memory by using the attribution from ATTNATTRIB as an additional signal during the forward pass. Beyond mechanistic understanding, our paper provides tangible applications of circuits in the form of reliable data attribution and model steering.
Abstract:Large language models trained on web-scale corpora can memorize undesirable datapoints such as incorrect facts, copyrighted content or sensitive data. Recently, many machine unlearning methods have been proposed that aim to 'erase' these datapoints from trained models -- that is, revert model behavior to be similar to a model that had never been trained on these datapoints. However, evaluating the success of unlearning algorithms remains challenging. In this work, we propose the RESTOR framework for machine unlearning based on the following dimensions: (1) a task setting that focuses on real-world factual knowledge, (2) a variety of corruption scenarios that emulate different kinds of datapoints that might need to be unlearned, and (3) evaluation metrics that emphasize not just forgetting undesirable knowledge, but also recovering the model's original state before encountering these datapoints, or restorative unlearning. RESTOR helps uncover several novel insights about popular unlearning algorithms, and the mechanisms through which they operate -- for instance, identifying that some algorithms merely emphasize forgetting the knowledge to be unlearned, and that localizing unlearning targets can enhance unlearning performance. Code/data is available at github.com/k1rezaei/restor.
Abstract:With models getting stronger, evaluations have grown more complex, testing multiple skills in one benchmark and even in the same instance at once. However, skill-wise performance is obscured when inspecting aggregate accuracy, under-utilizing the rich signal modern benchmarks contain. We propose an automatic approach to recover the underlying skills relevant for any evaluation instance, by way of inspecting model-generated rationales. After validating the relevance of rationale-parsed skills and inferring skills for $46$k instances over $12$ benchmarks, we observe many skills to be common across benchmarks, resulting in the curation of hundreds of skill-slices (i.e. sets of instances testing a common skill). Inspecting accuracy over these slices yields novel insights on model trade-offs: e.g., compared to GPT-4o and Claude 3.5 Sonnet, on average, Gemini 1.5 Pro is $18\%$ more accurate in "computing molar mass", but $19\%$ less accurate in "applying constitutional law", despite the overall accuracies of the three models differing by a mere $0.4\%$. Furthermore, we demonstrate the practical utility of our approach by showing that insights derived from skill slice analysis can generalize to held-out instances: when routing each instance to the model strongest on the relevant skills, we see a $3\%$ accuracy improvement over our $12$ dataset corpus. Our skill-slices and framework open a new avenue in model evaluation, leveraging skill-specific analyses to unlock a more granular and actionable understanding of model capabilities.
Abstract:Image-text contrastive models such as CLIP learn transferable and robust representations for zero-shot transfer to a variety of downstream tasks. However, to obtain strong downstream performances, prompts need to be carefully curated, which can be a tedious engineering task. To address the issue of manual prompt engineering, prompt-tuning is used where a set of contextual vectors are learned by leveraging information from the training data. Despite their effectiveness, existing prompt-tuning frameworks often lack interpretability, thus limiting their ability to understand the compositional nature of images. In this work, we first identify that incorporating compositional attributes (e.g., a "green" tree frog) in the design of manual prompts can significantly enhance image-text alignment scores. Building upon this observation, we propose a novel and interpretable prompt-tuning method named IntCoOp, which learns to jointly align attribute-level inductive biases and class embeddings during prompt-tuning. To assess the effectiveness of our approach, we evaluate IntCoOp across two representative tasks in a few-shot learning setup: generalization to novel classes, and unseen domain shifts. Through extensive experiments across 10 downstream datasets on CLIP, we find that introducing attribute-level inductive biases leads to superior performance against state-of-the-art prompt tuning frameworks. Notably, in a 16-shot setup, IntCoOp improves CoOp by 7.35% in average performance across 10 diverse datasets.