Abstract:As frontier AI systems are pretrained on web-scale data, test set contamination has become a critical concern for accurately assessing their capabilities. While research has thoroughly investigated the impact of test set contamination on discriminative evaluations like multiple-choice question-answering, comparatively little research has studied the impact of test set contamination on generative evaluations. In this work, we quantitatively assess the effect of test set contamination on generative evaluations through the language model lifecycle. We pretrain language models on mixtures of web data and the MATH benchmark, sweeping model sizes and number of test set replicas contaminating the pretraining corpus; performance improves with contamination and model size. Using scaling laws, we make a surprising discovery: including even a single test set replica enables models to achieve lower loss than the irreducible error of training on the uncontaminated corpus. We then study further training: overtraining with fresh data reduces the effects of contamination, whereas supervised finetuning on the training set can either increase or decrease performance on test data, depending on the amount of pretraining contamination. Finally, at inference, we identify factors that modulate memorization: high sampling temperatures mitigate contamination effects, and longer solutions are exponentially more difficult to memorize than shorter ones, presenting a contrast with discriminative evaluations, where solutions are only a few tokens in length. By characterizing how generation and memorization interact, we highlight a new layer of complexity for trustworthy evaluation of AI systems.
Abstract:Reinforcement learning (RL) is often credited with improving language model reasoning and generalization at the expense of degrading memorized knowledge. We challenge this narrative by observing that RL-enhanced models consistently outperform their base and supervised fine-tuned (SFT) counterparts on pure knowledge recall tasks, particularly those requiring traversal of hierarchical, structured knowledge (e.g., medical codes). We hypothesize these gains stem not from newly acquired data, but from improved procedural skills in navigating and searching existing knowledge hierarchies within the model parameters. To support this hypothesis, we show that structured prompting, which explicitly guides SFTed models through hierarchical traversal, recovers most of the performance gap (reducing 24pp to 7pp on MedConceptsQA for DeepSeek-V3/R1). We further find that while prompting improves final-answer accuracy, RL-enhanced models retain superior ability to recall correct procedural paths on deep-retrieval tasks. Finally our layer-wise internal activation analysis reveals that while factual representations (e.g., activations for the statement "code 57.95 refers to urinary infection") maintain high cosine similarity between SFT and RL models, query representations (e.g., "what is code 57.95") diverge noticeably, indicating that RL primarily transforms how models traverse knowledge rather than the knowledge representation itself.
Abstract:The discourse on privacy risks in Large Language Models (LLMs) has disproportionately focused on verbatim memorization of training data, while a constellation of more immediate and scalable privacy threats remain underexplored. This position paper argues that the privacy landscape of LLM systems extends far beyond training data extraction, encompassing risks from data collection practices, inference-time context leakage, autonomous agent capabilities, and the democratization of surveillance through deep inference attacks. We present a comprehensive taxonomy of privacy risks across the LLM lifecycle -- from data collection through deployment -- and demonstrate through case studies how current privacy frameworks fail to address these multifaceted threats. Through a longitudinal analysis of 1,322 AI/ML privacy papers published at leading conferences over the past decade (2016--2025), we reveal that while memorization receives outsized attention in technical research, the most pressing privacy harms lie elsewhere, where current technical approaches offer little traction and viable paths forward remain unclear. We call for a fundamental shift in how the research community approaches LLM privacy, moving beyond the narrow focus of current technical solutions and embracing interdisciplinary approaches that address the sociotechnical nature of these emerging threats.
Abstract:Lyrics-to-Song (LS2) generation models promise end-to-end music synthesis from text, yet their vulnerability to training data memorization remains underexplored. We introduce Adversarial PhoneTic Prompting (APT), a novel attack where lyrics are semantically altered while preserving their acoustic structure through homophonic substitutions (e.g., Eminem's famous "mom's spaghetti" $\rightarrow$ "Bob's confetti"). Despite these distortions, we uncover a powerful form of sub-lexical memorization: models like SUNO and YuE regenerate outputs strikingly similar to known training content, achieving high similarity across audio-domain metrics, including CLAP, AudioJudge, and CoverID. This vulnerability persists across multiple languages and genres. More surprisingly, we discover that phoneme-altered lyrics alone can trigger visual memorization in text-to-video models. When prompted with phonetically modified lyrics from Lose Yourself, Veo 3 reconstructs visual elements from the original music video -- including character appearance and scene composition -- despite no visual cues in the prompt. We term this phenomenon phonetic-to-visual regurgitation. Together, these findings expose a critical vulnerability in transcript-conditioned multimodal generation: phonetic prompting alone can unlock memorized audiovisual content, raising urgent questions about copyright, safety, and content provenance in modern generative systems. Example generations are available on our demo page (jrohsc.github.io/music_attack/).
Abstract:State-of-the-art membership inference attacks (MIAs) typically require training many reference models, making it difficult to scale these attacks to large pre-trained language models (LLMs). As a result, prior research has either relied on weaker attacks that avoid training reference models (e.g., fine-tuning attacks), or on stronger attacks applied to small-scale models and datasets. However, weaker attacks have been shown to be brittle - achieving close-to-arbitrary success - and insights from strong attacks in simplified settings do not translate to today's LLMs. These challenges have prompted an important question: are the limitations observed in prior work due to attack design choices, or are MIAs fundamentally ineffective on LLMs? We address this question by scaling LiRA - one of the strongest MIAs - to GPT-2 architectures ranging from 10M to 1B parameters, training reference models on over 20B tokens from the C4 dataset. Our results advance the understanding of MIAs on LLMs in three key ways: (1) strong MIAs can succeed on pre-trained LLMs; (2) their effectiveness, however, remains limited (e.g., AUC<0.7) in practical settings; and, (3) the relationship between MIA success and related privacy metrics is not as straightforward as prior work has suggested.




Abstract:Large language models (LLMs) are increasingly being used to protect sensitive user data. However, current LLM-based privacy solutions assume that these models can reliably detect personally identifiable information (PII), particularly named entities. In this paper, we challenge that assumption by revealing systematic failures in LLM-based privacy tasks. Specifically, we show that modern LLMs regularly overlook human names even in short text snippets due to ambiguous contexts, which cause the names to be misinterpreted or mishandled. We propose AMBENCH, a benchmark dataset of seemingly ambiguous human names, leveraging the name regularity bias phenomenon, embedded within concise text snippets along with benign prompt injections. Our experiments on modern LLMs tasked to detect PII as well as specialized tools show that recall of ambiguous names drops by 20--40% compared to more recognizable names. Furthermore, ambiguous human names are four times more likely to be ignored in supposedly privacy-preserving summaries generated by LLMs when benign prompt injections are present. These findings highlight the underexplored risks of relying solely on LLMs to safeguard user privacy and underscore the need for a more systematic investigation into their privacy failure modes.
Abstract:Sanitizing sensitive text data typically involves removing personally identifiable information (PII) or generating synthetic data under the assumption that these methods adequately protect privacy; however, their effectiveness is often only assessed by measuring the leakage of explicit identifiers but ignoring nuanced textual markers that can lead to re-identification. We challenge the above illusion of privacy by proposing a new framework that evaluates re-identification attacks to quantify individual privacy risks upon data release. Our approach shows that seemingly innocuous auxiliary information -- such as routine social activities -- can be used to infer sensitive attributes like age or substance use history from sanitized data. For instance, we demonstrate that Azure's commercial PII removal tool fails to protect 74\% of information in the MedQA dataset. Although differential privacy mitigates these risks to some extent, it significantly reduces the utility of the sanitized text for downstream tasks. Our findings indicate that current sanitization techniques offer a \textit{false sense of privacy}, highlighting the need for more robust methods that protect against semantic-level information leakage.
Abstract:Language models (LMs) can memorize and reproduce segments from their pretraining data verbatim even in non-adversarial settings, raising concerns about copyright, plagiarism, privacy, and creativity. We introduce Paraphrase Preference Optimization (ParaPO), a post-training method that fine-tunes LMs to reduce unintentional regurgitation while preserving their overall utility. ParaPO trains LMs to prefer paraphrased versions of memorized segments over the original verbatim content from the pretraining data. To maintain the ability to recall famous quotations when appropriate, we develop a variant of ParaPO that uses system prompts to control regurgitation behavior. In our evaluation on Llama3.1-8B, ParaPO consistently reduces regurgitation across all tested datasets (e.g., reducing the regurgitation metric from 17.3 to 12.9 in creative writing), whereas unlearning methods used in prior work to mitigate regurgitation are less effective outside their targeted unlearned domain (from 17.3 to 16.9). When applied to the instruction-tuned Tulu3-8B model, ParaPO with system prompting successfully preserves famous quotation recall while reducing unintentional regurgitation (from 8.7 to 6.3 in creative writing) when prompted not to regurgitate. In contrast, without ParaPO tuning, prompting the model not to regurgitate produces only a marginal reduction (8.7 to 8.4).




Abstract:High-quality training data has proven crucial for developing performant large language models (LLMs). However, commercial LLM providers disclose few, if any, details about the data used for training. This lack of transparency creates multiple challenges: it limits external oversight and inspection of LLMs for issues such as copyright infringement, it undermines the agency of data authors, and it hinders scientific research on critical issues such as data contamination and data selection. How can we recover what training data is known to LLMs? In this work, we demonstrate a new method to identify training data known to proprietary LLMs like GPT-4 without requiring any access to model weights or token probabilities, by using information-guided probes. Our work builds on a key observation: text passages with high surprisal are good search material for memorization probes. By evaluating a model's ability to successfully reconstruct high-surprisal tokens in text, we can identify a surprising number of texts memorized by LLMs.
Abstract:Due to the sensitive nature of personally identifiable information (PII), its owners may have the authority to control its inclusion or request its removal from large-language model (LLM) training. Beyond this, PII may be added or removed from training datasets due to evolving dataset curation techniques, because they were newly scraped for retraining, or because they were included in a new downstream fine-tuning stage. We find that the amount and ease of PII memorization is a dynamic property of a model that evolves throughout training pipelines and depends on commonly altered design choices. We characterize three such novel phenomena: (1) similar-appearing PII seen later in training can elicit memorization of earlier-seen sequences in what we call assisted memorization, and this is a significant factor (in our settings, up to 1/3); (2) adding PII can increase memorization of other PII significantly (in our settings, as much as $\approx\!7.5\times$); and (3) removing PII can lead to other PII being memorized. Model creators should consider these first- and second-order privacy risks when training models to avoid the risk of new PII regurgitation.