Abstract:Category-level object pose estimation, which predicts the pose of objects within a known category without prior knowledge of individual instances, is essential in applications like warehouse automation and manufacturing. Existing methods relying on RGB images or point cloud data often struggle with object occlusion and generalization across different instances and categories. This paper proposes a multimodal-based keypoint learning framework (MK-Pose) that integrates RGB images, point clouds, and category-level textual descriptions. The model uses a self-supervised keypoint detection module enhanced with attention-based query generation, soft heatmap matching and graph-based relational modeling. Additionally, a graph-enhanced feature fusion module is designed to integrate local geometric information and global context. MK-Pose is evaluated on CAMERA25 and REAL275 dataset, and is further tested for cross-dataset capability on HouseCat6D dataset. The results demonstrate that MK-Pose outperforms existing state-of-the-art methods in both IoU and average precision without shape priors. Codes will be released at \href{https://github.com/yangyifanYYF/MK-Pose}{https://github.com/yangyifanYYF/MK-Pose}.
Abstract:Low-cost millimeter automotive radar has received more and more attention due to its ability to handle adverse weather and lighting conditions in autonomous driving. However, the lack of quality datasets hinders research and development. We report a new method that is able to simulate 4D millimeter wave radar signals including pitch, yaw, range, and Doppler velocity along with radar signal strength (RSS) using camera image, light detection and ranging (lidar) point cloud, and ego-velocity. The method is based on two new neural networks: 1) DIS-Net, which estimates the spatial distribution and number of radar signals, and 2) RSS-Net, which predicts the RSS of the signal based on appearance and geometric information. We have implemented and tested our method using open datasets from 3 different models of commercial automotive radar. The experimental results show that our method can successfully generate high-fidelity radar signals. Moreover, we have trained a popular object detection neural network with data augmented by our synthesized radar. The network outperforms the counterpart trained only on raw radar data, a promising result to facilitate future radar-based research and development.