Abstract:Effective human-agent collaboration is increasingly prevalent in real-world applications. Current trends in such collaborations are predominantly unidirectional, with users providing instructions or posing questions to agents, where agents respond directly without seeking necessary clarifications or confirmations. However, the evolving capabilities of these agents require more proactive engagement, where agents should dynamically participate in conversations to clarify user intents, resolve ambiguities, and adapt to changing circumstances. Existing prior work under-utilize the conversational capabilities of language models (LMs), thereby optimizing agents as better followers rather than effective speakers. In this work, we introduce SpeakRL, a reinforcement learning (RL) method that enhances agents' conversational capabilities by rewarding proactive interactions with users, such as asking right clarification questions when necessary. To support this, we curate SpeakER, a synthetic dataset that includes diverse scenarios from task-oriented dialogues, where tasks are resolved through interactive clarification questions. We present a systematic analysis of reward design for conversational proactivity and propose a principled reward formulation for teaching agents to balance asking with acting. Empirical evaluations demonstrate that our approach achieves a 20.14% absolute improvement in task completion over base models without increasing conversation turns even surpassing even much larger proprietary models, demonstrating the promise of clarification-centric user-agent interactions.
Abstract:Conversational agents often encounter ambiguous user requests, requiring an effective clarification to successfully complete tasks. While recent advancements in real-world applications favor multi-agent architectures to manage complex conversational scenarios efficiently, ambiguity resolution remains a critical and underexplored challenge--particularly due to the difficulty of determining which agent should initiate a clarification and how agents should coordinate their actions when faced with uncertain or incomplete user input. The fundamental questions of when to interrupt a user and how to formulate the optimal clarification query within the most optimal multi-agent settings remain open. In this paper, we propose MAC (Multi-Agent Clarification), an interactive multi-agent framework specifically optimized to resolve user ambiguities by strategically managing clarification dialogues. We first introduce a novel taxonomy categorizing user ambiguities to systematically guide clarification strategies. Then, we present MAC that autonomously coordinates multiple agents to interact synergistically with users. Empirical evaluations on MultiWOZ 2.4 demonstrate that enabling clarification at both levels increases task success rate 7.8\% (54.5 to 62.3) and reduces the average number of dialogue turns (6.53 to 4.86) by eliciting all required user information up front and minimizing repetition. Our findings highlight the importance of active user interaction and role-aware clarification for more reliable human-agent communication.




Abstract:Vehicle-to-Vehicle (V2V) cooperative perception has great potential to enhance autonomous driving performance by overcoming perception limitations in complex adverse traffic scenarios (CATS). Meanwhile, data serves as the fundamental infrastructure for modern autonomous driving AI. However, due to stringent data collection requirements, existing datasets focus primarily on ordinary traffic scenarios, constraining the benefits of cooperative perception. To address this challenge, we introduce CATS-V2V, the first-of-its-kind real-world dataset for V2V cooperative perception under complex adverse traffic scenarios. The dataset was collected by two hardware time-synchronized vehicles, covering 10 weather and lighting conditions across 10 diverse locations. The 100-clip dataset includes 60K frames of 10 Hz LiDAR point clouds and 1.26M multi-view 30 Hz camera images, along with 750K anonymized yet high-precision RTK-fixed GNSS and IMU records. Correspondingly, we provide time-consistent 3D bounding box annotations for objects, as well as static scenes to construct a 4D BEV representation. On this basis, we propose a target-based temporal alignment method, ensuring that all objects are precisely aligned across all sensor modalities. We hope that CATS-V2V, the largest-scale, most supportive, and highest-quality dataset of its kind to date, will benefit the autonomous driving community in related tasks.




Abstract:In recent months, substantial progress has been made in complex reasoning of Large Language Models, particularly through the application of test-time scaling. Notable examples include o1/o3/o4 series and DeepSeek-R1. When responding to a query, these models generate an extended reasoning trajectory, during which the model explores, reflects, backtracks, and self-verifies before arriving at a conclusion. However, fine-tuning models with such reasoning trajectories may not always be optimal. Our findings indicate that not all components within these reasoning trajectories contribute positively to the reasoning process; in fact, some components may affect the overall performance negatively. In this study, we divide a reasoning trajectory into individual subtrajectories and develop a "5+2" framework to: (1) systematically identify suboptimal subtrajectories within the reasoning trajectory based on five human-established criteria; (2) assess the independence of the suboptimal subtrajectories identified in (1) from the subsequent content, ensuring that their elimination does not compromise overall flow and coherence of the reasoning process. Additionally, a sampling algorithm, built upon the "5+2" framework, is employed to select data whose reasoning process is free from suboptimal subtrajectories to the highest degree. Experimental results demonstrate that our method can reduce the number of suboptimal subtrajectories by 25.9\% during the inference. Furthermore, our method achieves an average accuracy of 58.92\% on highly challenging math benchmarks with only two thirds of training data, surpassing the average accuracy of 58.06\% achieved with the entire data, and outperforming open-source datasets, when fine-tuning Qwen2.5-Math-7B. Finally, We validated our method under resource constraints and observed improved performance across various inference token limits.
Abstract:With the rapid development of automated vehicles (AVs) in recent years, commercially available AVs are increasingly demonstrating high-level automation capabilities. However, most existing AV safety evaluation methods are primarily designed for simple maneuvers such as car-following and lane-changing. While suitable for basic tests, these methods are insufficient for assessing high-level automation functions deployed in more complex environments. First, these methods typically use crash rate as the evaluation metric, whose accuracy heavily depends on the quality and completeness of naturalistic driving environment data used to estimate scenario probabilities. Such data is often difficult and expensive to collect. Second, when applied to diverse scenarios, these methods suffer from the curse of dimensionality, making large-scale evaluation computationally intractable. To address these challenges, this paper proposes a novel framework for full-scenario AV safety evaluation. A unified model is first introduced to standardize the representation of diverse driving scenarios. This modeling approach constrains the dimension of most scenarios to a regular highway setting with three lanes and six surrounding background vehicles, significantly reducing dimensionality. To further avoid the limitations of probability-based method, we propose a volume-based evaluation method that quantifies the proportion of risky scenarios within the entire scenario space. For car-following scenarios, we prove that the set of safe scenarios is convex under specific settings, enabling exact volume computation. Experimental results validate the effectiveness of the proposed volume-based method using both AV behavior models from existing literature and six production AV models calibrated from field-test trajectory data in the Ultra-AV dataset. Code and data will be made publicly available upon acceptance of this paper.
Abstract:With the advancement of speech synthesis technology, users have higher expectations for the naturalness and expressiveness of synthesized speech. But previous research ignores the importance of prompt selection. This study proposes a text-to-speech (TTS) framework based on Retrieval-Augmented Generation (RAG) technology, which can dynamically adjust the speech style according to the text content to achieve more natural and vivid communication effects. We have constructed a speech style knowledge database containing high-quality speech samples in various contexts and developed a style matching scheme. This scheme uses embeddings, extracted by Llama, PER-LLM-Embedder,and Moka, to match with samples in the knowledge database, selecting the most appropriate speech style for synthesis. Furthermore, our empirical research validates the effectiveness of the proposed method. Our demo can be viewed at: https://thuhcsi.github.io/icme2025-AutoStyle-TTS
Abstract:The Markov property serves as a foundational assumption in most existing work on vehicle driving behavior, positing that future states depend solely on the current state, not the series of preceding states. This study validates the Markov properties of vehicle trajectories for both Autonomous Vehicles (AVs) and Human-driven Vehicles (HVs). A statistical method used to test whether time series data exhibits Markov properties is applied to examine whether the trajectory data possesses Markov characteristics. t test and F test are additionally introduced to characterize the differences in Markov properties between AVs and HVs. Based on two public trajectory datasets, we investigate the presence and order of the Markov property of different types of vehicles through rigorous statistical tests. Our findings reveal that AV trajectories generally exhibit stronger Markov properties compared to HV trajectories, with a higher percentage conforming to the Markov property and lower Markov orders. In contrast, HV trajectories display greater variability and heterogeneity in decision-making processes, reflecting the complex perception and information processing involved in human driving. These results have significant implications for the development of driving behavior models, AV controllers, and traffic simulation systems. Our study also demonstrates the feasibility of using statistical methods to test the presence of Markov properties in driving trajectory data.
Abstract:Recent advances in large language models (LLMs) have enhanced their ability to process long input contexts. This development is particularly crucial for tasks that involve retrieving knowledge from an external datastore, which can result in long inputs. However, recent studies show a positional bias in LLMs, demonstrating varying performance depending on the location of useful information within the input sequence. In this study, we conduct extensive experiments to investigate the root causes of positional bias. Our findings indicate that the primary contributor to LLM positional bias stems from the inherent positional preferences of different models. We demonstrate that merely employing prompt-based solutions is inadequate for overcoming the positional preferences. To address this positional bias issue of a pre-trained LLM, we developed a Position-Aware Parameter Efficient Fine-Tuning (PAPEFT) approach which is composed of a data augmentation technique and a parameter efficient adapter, enhancing a uniform attention distribution across the input context. Our experiments demonstrate that the proposed approach effectively reduces positional bias, improving LLMs' effectiveness in handling long context sequences for various tasks that require externally retrieved knowledge.




Abstract:Despite significant progress in autonomous vehicles (AVs), the development of driving policies that ensure both the safety of AVs and traffic flow efficiency has not yet been fully explored. In this paper, we propose an enhanced human-in-the-loop reinforcement learning method, termed the Human as AI mentor-based deep reinforcement learning (HAIM-DRL) framework, which facilitates safe and efficient autonomous driving in mixed traffic platoon. Drawing inspiration from the human learning process, we first introduce an innovative learning paradigm that effectively injects human intelligence into AI, termed Human as AI mentor (HAIM). In this paradigm, the human expert serves as a mentor to the AI agent. While allowing the agent to sufficiently explore uncertain environments, the human expert can take control in dangerous situations and demonstrate correct actions to avoid potential accidents. On the other hand, the agent could be guided to minimize traffic flow disturbance, thereby optimizing traffic flow efficiency. In detail, HAIM-DRL leverages data collected from free exploration and partial human demonstrations as its two training sources. Remarkably, we circumvent the intricate process of manually designing reward functions; instead, we directly derive proxy state-action values from partial human demonstrations to guide the agents' policy learning. Additionally, we employ a minimal intervention technique to reduce the human mentor's cognitive load. Comparative results show that HAIM-DRL outperforms traditional methods in driving safety, sampling efficiency, mitigation of traffic flow disturbance, and generalizability to unseen traffic scenarios. The code and demo videos for this paper can be accessed at: https://zilin-huang.github.io/HAIM-DRL-website/




Abstract:For robots performing a assistive tasks for the humans, it is crucial to synchronize their speech with their motions, in order to achieve natural and effective human-robot interaction. When a robot's speech is out of sync with their motions, it can cause confusion, frustration, and misinterpretation of the robot's intended meaning. Humans are accustomed to using both verbal and nonverbal cues to understand and coordinate with each other, and robots that can align their speech with their actions can tap into this natural mode of communication. In this research, we propose a language controller for robots to control the pace, tone, and pauses of their speech along with it's motion in the trajectory. The robot's speed is adjusted using an admittance controller based on the force input from the user, and the robot's speech speed is modulated using phase-vocoders.