Abstract:To advance biomedical vison-language model capabilities through scaling up, fine-tuning, and instruction tuning, develop vision-language models with improved performance in handling long text, explore strategies to efficiently adopt vision language models for diverse multi-modal biomedical tasks, and examine the zero-shot learning performance. We developed two biomedical vision language models, BiomedGPT-Large and BiomedGPT-XLarge, based on an encoder-decoder-based transformer architecture. We fine-tuned the two models on 23 benchmark datasets from 6 multi-modal biomedical tasks including one image-only task (image classification), three language-only tasks (text understanding, text summarization and question answering), and two vision-language tasks (visual question answering and image captioning). We compared the developed scaled models with our previous BiomedGPT-Base model and existing prestigious models reported in the literature. We instruction-tuned the two models using a large-scale multi-modal biomedical instruction-tuning dataset and assessed the zero-shot learning performance and alignment accuracy.




Abstract:Existing AI-generated text detection methods heavily depend on large annotated datasets and external threshold tuning, restricting interpretability, adaptability, and zero-shot effectiveness. To address these limitations, we propose AGENT-X, a zero-shot multi-agent framework informed by classical rhetoric and systemic functional linguistics. Specifically, we organize detection guidelines into semantic, stylistic, and structural dimensions, each independently evaluated by specialized linguistic agents that provide explicit reasoning and robust calibrated confidence via semantic steering. A meta agent integrates these assessments through confidence-aware aggregation, enabling threshold-free, interpretable classification. Additionally, an adaptive Mixture-of-Agent router dynamically selects guidelines based on inferred textual characteristics. Experiments on diverse datasets demonstrate that AGENT-X substantially surpasses state-of-the-art supervised and zero-shot approaches in accuracy, interpretability, and generalization.
Abstract:The Neyman-Pearson region of a simple binary hypothesis testing is the set of points whose coordinates represent the false positive rate and false negative rate of some test. The lower boundary of this region is given by the Neyman-Pearson lemma, and is up to a coordinate change, equivalent to the optimal ROC curve. We establish a novel lower bound for the boundary in terms of any $f$-divergence. Since the bound generated by hockey-stick $f$-divergences characterizes the Neyman-Pearson boundary, this bound is best possible. In the case of KL divergence, this bound improves Pinsker's inequality. Furthermore, we obtain a closed-form refined upper bound for the Neyman-Pearson boundary in terms of the Chernoff $\alpha$-coefficient. Finally, we present methods for constructing pairs of distributions that can approximately or exactly realize any given Neyman-Pearson boundary.
Abstract:Natural language generation (NLG) is the key technology to achieve generative artificial intelligence (AI). With the breakthroughs in large language models (LLMs), NLG has been widely used in various medical applications, demonstrating the potential to enhance clinical workflows, support clinical decision-making, and improve clinical documentation. Heterogeneous and diverse medical data modalities, such as medical text, images, and knowledge bases, are utilized in NLG. Researchers have proposed many generative models and applied them in a number of healthcare applications. There is a need for a comprehensive review of NLG methods and applications in the medical domain. In this study, we systematically reviewed 113 scientific publications from a total of 3,988 NLG-related articles identified using a literature search, focusing on data modality, model architecture, clinical applications, and evaluation methods. Following PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) guidelines, we categorize key methods, identify clinical applications, and assess their capabilities, limitations, and emerging challenges. This timely review covers the key NLG technologies and medical applications and provides valuable insights for future studies to leverage NLG to transform medical discovery and healthcare.
Abstract:Production of photorealistic, navigable 3D site models requires a large volume of carefully collected images that are often unavailable to first responders for disaster relief or law enforcement. Real-world challenges include limited numbers of images, heterogeneous unposed cameras, inconsistent lighting, and extreme viewpoint differences for images collected from varying altitudes. To promote research aimed at addressing these challenges, we have developed the first public benchmark dataset for 3D reconstruction and novel view synthesis based on multiple calibrated ground-level, security-level, and airborne cameras. We present datasets that pose real-world challenges, independently evaluate calibration of unposed cameras and quality of novel rendered views, demonstrate baseline performance using recent state-of-practice methods, and identify challenges for further research.
Abstract:Image matching is a key component of modern 3D vision algorithms, essential for accurate scene reconstruction and localization. MASt3R redefines image matching as a 3D task by leveraging DUSt3R and introducing a fast reciprocal matching scheme that accelerates matching by orders of magnitude while preserving theoretical guarantees. This approach has gained strong traction, with DUSt3R and MASt3R collectively cited over 250 times in a short span, underscoring their impact. However, despite its accuracy, MASt3R's inference speed remains a bottleneck. On an A40 GPU, latency per image pair is 198.16 ms, mainly due to computational overhead from the ViT encoder-decoder and Fast Reciprocal Nearest Neighbor (FastNN) matching. To address this, we introduce Speedy MASt3R, a post-training optimization framework that enhances inference efficiency while maintaining accuracy. It integrates multiple optimization techniques, including FlashMatch-an approach leveraging FlashAttention v2 with tiling strategies for improved efficiency, computation graph optimization via layer and tensor fusion having kernel auto-tuning with TensorRT (GraphFusion), and a streamlined FastNN pipeline that reduces memory access time from quadratic to linear while accelerating block-wise correlation scoring through vectorized computation (FastNN-Lite). Additionally, it employs mixed-precision inference with FP16/FP32 hybrid computations (HybridCast), achieving speedup while preserving numerical precision. Evaluated on Aachen Day-Night, InLoc, 7-Scenes, ScanNet1500, and MegaDepth1500, Speedy MASt3R achieves a 54% reduction in inference time (198 ms to 91 ms per image pair) without sacrificing accuracy. This advancement enables real-time 3D understanding, benefiting applications like mixed reality navigation and large-scale 3D scene reconstruction.
Abstract:Significant progress has been made in photo-realistic scene reconstruction over recent years. Various disparate efforts have enabled capabilities such as multi-appearance or large-scale modeling; however, there lacks a welldesigned dataset that can evaluate the holistic progress of scene reconstruction. We introduce a collection of imagery of the Johns Hopkins Homewood Campus, acquired at different seasons, times of day, in multiple elevations, and across a large scale. We perform a multi-stage calibration process, which efficiently recover camera parameters from phone and drone cameras. This dataset can enable researchers to rigorously explore challenges in unconstrained settings, including effects of inconsistent illumination, reconstruction from large scale and from significantly different perspectives, etc.




Abstract:Understanding, navigating, and exploring the 3D physical real world has long been a central challenge in the development of artificial intelligence. In this work, we take a step toward this goal by introducing GenEx, a system capable of planning complex embodied world exploration, guided by its generative imagination that forms priors (expectations) about the surrounding environments. GenEx generates an entire 3D-consistent imaginative environment from as little as a single RGB image, bringing it to life through panoramic video streams. Leveraging scalable 3D world data curated from Unreal Engine, our generative model is rounded in the physical world. It captures a continuous 360-degree environment with little effort, offering a boundless landscape for AI agents to explore and interact with. GenEx achieves high-quality world generation, robust loop consistency over long trajectories, and demonstrates strong 3D capabilities such as consistency and active 3D mapping. Powered by generative imagination of the world, GPT-assisted agents are equipped to perform complex embodied tasks, including both goal-agnostic exploration and goal-driven navigation. These agents utilize predictive expectation regarding unseen parts of the physical world to refine their beliefs, simulate different outcomes based on potential decisions, and make more informed choices. In summary, we demonstrate that GenEx provides a transformative platform for advancing embodied AI in imaginative spaces and brings potential for extending these capabilities to real-world exploration.
Abstract:Geometric reconstruction of opaque surfaces from images is a longstanding challenge in computer vision, with renewed interest from volumetric view synthesis algorithms using radiance fields. We leverage the geometry field proposed in recent work for stochastic opaque surfaces, which can then be converted to volume densities. We adapt Gaussian kernels or surfels to splat the geometry field rather than the volume, enabling precise reconstruction of opaque solids. Our first contribution is to derive an efficient and almost exact differentiable rendering algorithm for geometry fields parameterized by Gaussian surfels, while removing current approximations involving Taylor series and no self-attenuation. Next, we address the discontinuous loss landscape when surfels cluster near geometry, showing how to guarantee that the rendered color is a continuous function of the colors of the kernels, irrespective of ordering. Finally, we use latent representations with spherical harmonics encoded reflection vectors rather than spherical harmonics encoded colors to better address specular surfaces. We demonstrate significant improvement in the quality of reconstructed 3D surfaces on widely-used datasets.




Abstract:Recent efforts in Gaussian-Splat-based Novel View Synthesis can achieve photorealistic rendering; however, such capability is limited in sparse-view scenarios due to sparse initialization and over-fitting floaters. Recent progress in depth estimation and alignment can provide dense point cloud with few views; however, the resulting pose accuracy is suboptimal. In this work, we present SPARS3R, which combines the advantages of accurate pose estimation from Structure-from-Motion and dense point cloud from depth estimation. To this end, SPARS3R first performs a Global Fusion Alignment process that maps a prior dense point cloud to a sparse point cloud from Structure-from-Motion based on triangulated correspondences. RANSAC is applied during this process to distinguish inliers and outliers. SPARS3R then performs a second, Semantic Outlier Alignment step, which extracts semantically coherent regions around the outliers and performs local alignment in these regions. Along with several improvements in the evaluation process, we demonstrate that SPARS3R can achieve photorealistic rendering with sparse images and significantly outperforms existing approaches.