Alert button
Picture for Aokun Chen

Aokun Chen

Alert button

A Study of Generative Large Language Model for Medical Research and Healthcare

May 22, 2023
Cheng Peng, Xi Yang, Aokun Chen, Kaleb E Smith, Nima PourNejatian, Anthony B Costa, Cheryl Martin, Mona G Flores, Ying Zhang, Tanja Magoc, Gloria Lipori, Duane A Mitchell, Naykky S Ospina, Mustafa M Ahmed, William R Hogan, Elizabeth A Shenkman, Yi Guo, Jiang Bian, Yonghui Wu

Figure 1 for A Study of Generative Large Language Model for Medical Research and Healthcare
Figure 2 for A Study of Generative Large Language Model for Medical Research and Healthcare
Figure 3 for A Study of Generative Large Language Model for Medical Research and Healthcare
Figure 4 for A Study of Generative Large Language Model for Medical Research and Healthcare

There is enormous enthusiasm and concerns in using large language models (LLMs) in healthcare, yet current assumptions are all based on general-purpose LLMs such as ChatGPT. This study develops a clinical generative LLM, GatorTronGPT, using 277 billion words of mixed clinical and English text with a GPT-3 architecture of 20 billion parameters. GatorTronGPT improves biomedical natural language processing for medical research. Synthetic NLP models trained using GatorTronGPT generated text outperform NLP models trained using real-world clinical text. Physicians Turing test using 1 (worst) to 9 (best) scale shows that there is no significant difference in linguistic readability (p = 0.22; 6.57 of GatorTronGPT compared with 6.93 of human) and clinical relevance (p = 0.91; 7.0 of GatorTronGPT compared with 6.97 of human) and that physicians cannot differentiate them (p < 0.001). This study provides insights on the opportunities and challenges of LLMs for medical research and healthcare.

Viaarxiv icon

Identifying Symptoms of Delirium from Clinical Narratives Using Natural Language Processing

Mar 31, 2023
Aokun Chen, Daniel Paredes, Zehao Yu, Xiwei Lou, Roberta Brunson, Jamie N. Thomas, Kimberly A. Martinez, Robert J. Lucero, Tanja Magoc, Laurence M. Solberg, Urszula A. Snigurska, Sarah E. Ser, Mattia Prosperi, Jiang Bian, Ragnhildur I. Bjarnadottir, Yonghui Wu

Figure 1 for Identifying Symptoms of Delirium from Clinical Narratives Using Natural Language Processing
Figure 2 for Identifying Symptoms of Delirium from Clinical Narratives Using Natural Language Processing
Figure 3 for Identifying Symptoms of Delirium from Clinical Narratives Using Natural Language Processing
Figure 4 for Identifying Symptoms of Delirium from Clinical Narratives Using Natural Language Processing

Delirium is an acute decline or fluctuation in attention, awareness, or other cognitive function that can lead to serious adverse outcomes. Despite the severe outcomes, delirium is frequently unrecognized and uncoded in patients' electronic health records (EHRs) due to its transient and diverse nature. Natural language processing (NLP), a key technology that extracts medical concepts from clinical narratives, has shown great potential in studies of delirium outcomes and symptoms. To assist in the diagnosis and phenotyping of delirium, we formed an expert panel to categorize diverse delirium symptoms, composed annotation guidelines, created a delirium corpus with diverse delirium symptoms, and developed NLP methods to extract delirium symptoms from clinical notes. We compared 5 state-of-the-art transformer models including 2 models (BERT and RoBERTa) from the general domain and 3 models (BERT_MIMIC, RoBERTa_MIMIC, and GatorTron) from the clinical domain. GatorTron achieved the best strict and lenient F1 scores of 0.8055 and 0.8759, respectively. We conducted an error analysis to identify challenges in annotating delirium symptoms and developing NLP systems. To the best of our knowledge, this is the first large language model-based delirium symptom extraction system. Our study lays the foundation for the future development of computable phenotypes and diagnosis methods for delirium.

Viaarxiv icon

Contextualized Medication Information Extraction Using Transformer-based Deep Learning Architectures

Mar 14, 2023
Aokun Chen, Zehao Yu, Xi Yang, Yi Guo, Jiang Bian, Yonghui Wu

Figure 1 for Contextualized Medication Information Extraction Using Transformer-based Deep Learning Architectures
Figure 2 for Contextualized Medication Information Extraction Using Transformer-based Deep Learning Architectures
Figure 3 for Contextualized Medication Information Extraction Using Transformer-based Deep Learning Architectures
Figure 4 for Contextualized Medication Information Extraction Using Transformer-based Deep Learning Architectures

Objective: To develop a natural language processing (NLP) system to extract medications and contextual information that help understand drug changes. This project is part of the 2022 n2c2 challenge. Materials and methods: We developed NLP systems for medication mention extraction, event classification (indicating medication changes discussed or not), and context classification to classify medication changes context into 5 orthogonal dimensions related to drug changes. We explored 6 state-of-the-art pretrained transformer models for the three subtasks, including GatorTron, a large language model pretrained using >90 billion words of text (including >80 billion words from >290 million clinical notes identified at the University of Florida Health). We evaluated our NLP systems using annotated data and evaluation scripts provided by the 2022 n2c2 organizers. Results:Our GatorTron models achieved the best F1-scores of 0.9828 for medication extraction (ranked 3rd), 0.9379 for event classification (ranked 2nd), and the best micro-average accuracy of 0.9126 for context classification. GatorTron outperformed existing transformer models pretrained using smaller general English text and clinical text corpora, indicating the advantage of large language models. Conclusion: This study demonstrated the advantage of using large transformer models for contextual medication information extraction from clinical narratives.

Viaarxiv icon

Computer Users Have Unique Yet Temporally Inconsistent Computer Usage Profiles

May 20, 2021
Luiz Giovanini, Fabrício Ceschin, Mirela Silva, Aokun Chen, Ramchandra Kulkarni, Sanjay Banda, Madison Lysaght, Heng Qiao, Nikolaos Sapountzis, Ruimin Sun, Brandon Matthews, Dapeng Oliver Wu, André Grégio, Daniela Oliveira

Figure 1 for Computer Users Have Unique Yet Temporally Inconsistent Computer Usage Profiles
Figure 2 for Computer Users Have Unique Yet Temporally Inconsistent Computer Usage Profiles
Figure 3 for Computer Users Have Unique Yet Temporally Inconsistent Computer Usage Profiles
Figure 4 for Computer Users Have Unique Yet Temporally Inconsistent Computer Usage Profiles

This paper investigates whether computer usage profiles comprised of process-, network-, mouse- and keystroke-related events are unique and temporally consistent in a naturalistic setting, discussing challenges and opportunities of using such profiles in applications of continuous authentication. We collected ecologically-valid computer usage profiles from 28 MS Windows 10 computer users over 8 weeks and submitted this data to comprehensive machine learning analysis involving a diverse set of online and offline classifiers. We found that (i) computer usage profiles have the potential to uniquely characterize computer users (with a maximum F-score of 99.94%); (ii) network-related events were the most useful features to properly recognize profiles (95.14% of the top features distinguishing users being network-related); (iii) user profiles were mostly inconsistent over the 8-week data collection period, with 92.86% of users exhibiting drifts in terms of time and usage habits; and (iv) online models are better suited to handle computer usage profiles compared to offline models (maximum F-score for each approach was 95.99% and 99.94%, respectively).

Viaarxiv icon

Learning Fast and Slow: PROPEDEUTICA for Real-time Malware Detection

Dec 04, 2017
Ruimin Sun, Xiaoyong Yuan, Pan He, Qile Zhu, Aokun Chen, Andre Gregio, Daniela Oliveira, Xiaolin Li

Figure 1 for Learning Fast and Slow: PROPEDEUTICA for Real-time Malware Detection
Figure 2 for Learning Fast and Slow: PROPEDEUTICA for Real-time Malware Detection
Figure 3 for Learning Fast and Slow: PROPEDEUTICA for Real-time Malware Detection
Figure 4 for Learning Fast and Slow: PROPEDEUTICA for Real-time Malware Detection

In this paper, we introduce and evaluate PROPEDEUTICA, a novel methodology and framework for efficient and effective real-time malware detection, leveraging the best of conventional machine learning (ML) and deep learning (DL) algorithms. In PROPEDEUTICA, all software processes in the system start execution subjected to a conventional ML detector for fast classification. If a piece of software receives a borderline classification, it is subjected to further analysis via more performance expensive and more accurate DL methods, via our newly proposed DL algorithm DEEPMALWARE. Further, we introduce delays to the execution of software subjected to deep learning analysis as a way to "buy time" for DL analysis and to rate-limit the impact of possible malware in the system. We evaluated PROPEDEUTICA with a set of 9,115 malware samples and 877 commonly used benign software samples from various categories for the Windows OS. Our results show that the false positive rate for conventional ML methods can reach 20%, and for modern DL methods it is usually below 6%. However, the classification time for DL can be 100X longer than conventional ML methods. PROPEDEUTICA improved the detection F1-score from 77.54% (conventional ML method) to 90.25%, and reduced the detection time by 54.86%. Further, the percentage of software subjected to DL analysis was approximately 40% on average. Further, the application of delays in software subjected to ML reduced the detection time by approximately 10%. Finally, we found and discussed a discrepancy between the detection accuracy offline (analysis after all traces are collected) and on-the-fly (analysis in tandem with trace collection). Our insights show that conventional ML and modern DL-based malware detectors in isolation cannot meet the needs of efficient and effective malware detection: high accuracy, low false positive rate, and short classification time.

* 17 pages, 7 figures 
Viaarxiv icon