Abstract:Text-to-image (T2I) diffusion models often exhibit gender bias, particularly by generating stereotypical associations between professions and gendered subjects. This paper presents SAE Debias, a lightweight and model-agnostic framework for mitigating such bias in T2I generation. Unlike prior approaches that rely on CLIP-based filtering or prompt engineering, which often require model-specific adjustments and offer limited control, SAE Debias operates directly within the feature space without retraining or architectural modifications. By leveraging a k-sparse autoencoder pre-trained on a gender bias dataset, the method identifies gender-relevant directions within the sparse latent space, capturing professional stereotypes. Specifically, a biased direction per profession is constructed from sparse latents and suppressed during inference to steer generations toward more gender-balanced outputs. Trained only once, the sparse autoencoder provides a reusable debiasing direction, offering effective control and interpretable insight into biased subspaces. Extensive evaluations across multiple T2I models, including Stable Diffusion 1.4, 1.5, 2.1, and SDXL, demonstrate that SAE Debias substantially reduces gender bias while preserving generation quality. To the best of our knowledge, this is the first work to apply sparse autoencoders for identifying and intervening in gender bias within T2I models. These findings contribute toward building socially responsible generative AI, providing an interpretable and model-agnostic tool to support fairness in text-to-image generation.
Abstract:Invisible watermarking of AI-generated images can help with copyright protection, enabling detection and identification of AI-generated media. In this work, we present a novel approach to watermark images of T2I Latent Diffusion Models (LDMs). By only fine-tuning text token embeddings $W_*$, we enable watermarking in selected objects or parts of the image, offering greater flexibility compared to traditional full-image watermarking. Our method leverages the text encoder's compatibility across various LDMs, allowing plug-and-play integration for different LDMs. Moreover, introducing the watermark early in the encoding stage improves robustness to adversarial perturbations in later stages of the pipeline. Our approach achieves $99\%$ bit accuracy ($48$ bits) with a $10^5 \times$ reduction in model parameters, enabling efficient watermarking.
Abstract:Analyzing individual emotions during group conversation is crucial in developing intelligent agents capable of natural human-machine interaction. While reliable emotion recognition techniques depend on different modalities (text, audio, video), the inherent heterogeneity between these modalities and the dynamic cross-modal interactions influenced by an individual's unique behavioral patterns make the task of emotion recognition very challenging. This difficulty is compounded in group settings, where the emotion and its temporal evolution are not only influenced by the individual but also by external contexts like audience reaction and context of the ongoing conversation. To meet this challenge, we propose a Multimodal Attention Network that captures cross-modal interactions at various levels of spatial abstraction by jointly learning its interactive bunch of mode-specific Peripheral and Central networks. The proposed MAN injects cross-modal attention via its Peripheral key-value pairs within each layer of a mode-specific Central query network. The resulting cross-attended mode-specific descriptors are then combined using an Adaptive Fusion technique that enables the model to integrate the discriminative and complementary mode-specific data patterns within an instance-specific multimodal descriptor. Given a dialogue represented by a sequence of utterances, the proposed AMuSE model condenses both spatial and temporal features into two dense descriptors: speaker-level and utterance-level. This helps not only in delivering better classification performance (3-5% improvement in Weighted-F1 and 5-7% improvement in Accuracy) in large-scale public datasets but also helps the users in understanding the reasoning behind each emotion prediction made by the model via its Multimodal Explainability Visualization module.