Abstract:We present HaoMo Vision-Language Model (HMVLM), an end-to-end driving framework that implements the slow branch of a cognitively inspired fast-slow architecture. A fast controller outputs low-level steering, throttle, and brake commands, while a slow planner-a large vision-language model-generates high-level intents such as "yield to pedestrian" or "merge after the truck" without compromising latency. HMVLM introduces three upgrades: (1) selective five-view prompting with an embedded 4s history of ego kinematics, (2) multi-stage chain-of-thought (CoT) prompting that enforces a Scene Understanding -> Driving Decision -> Trajectory Inference reasoning flow, and (3) spline-based trajectory post-processing that removes late-stage jitter and sharp turns. Trained on the Waymo Open Dataset, these upgrades enable HMVLM to achieve a Rater Feedback Score (RFS) of 7.7367, securing 2nd place in the 2025 Waymo Vision-based End-to-End (E2E) Driving Challenge and surpassing the public baseline by 2.77%.
Abstract:In an era overwhelmed by vast amounts of data, the effective curation of web-crawl datasets is essential for optimizing model performance. This paper tackles the challenges associated with the unstructured and heterogeneous nature of such datasets. Traditional heuristic curation methods often inadequately capture complex features, resulting in biases and the exclusion of relevant data. We introduce an advanced, learning-driven approach, Ensemble Curation Of DAta ThroUgh Multimodal Operators (EcoDatum), incorporating a novel quality-guided deduplication method to ensure balanced feature distributions. EcoDatum strategically integrates various unimodal and multimodal data curation operators within a weak supervision ensemble framework, utilizing automated optimization to score each data point effectively. EcoDatum, which significantly improves the data curation quality and efficiency, outperforms existing state-of-the-art (SOTA) techniques, ranked 1st on the DataComp leaderboard, with an average performance score of 0.182 across 38 diverse evaluation datasets. This represents a 28% improvement over the DataComp baseline method, demonstrating its effectiveness in improving dataset curation and model training efficiency.