Abstract:Precise lesion resection depends on accurately identifying fine-grained anatomical structures. While many coarse-grained segmentation (CGS) methods have been successful in large-scale segmentation (e.g., organs), they fall short in clinical scenarios requiring fine-grained segmentation (FGS), which remains challenging due to frequent individual variations in small-scale anatomical structures. Although recent Mamba-based models have advanced medical image segmentation, they often rely on fixed manually-defined scanning orders, which limit their adaptability to individual variations in FGS. To address this, we propose ASM-UNet, a novel Mamba-based architecture for FGS. It introduces adaptive scan scores to dynamically guide the scanning order, generated by combining group-level commonalities and individual-level variations. Experiments on two public datasets (ACDC and Synapse) and a newly proposed challenging biliary tract FGS dataset, namely BTMS, demonstrate that ASM-UNet achieves superior performance in both CGS and FGS tasks. Our code and dataset are available at https://github.com/YqunYang/ASM-UNet.
Abstract:General change detection (GCD) and semantic change detection (SCD) are common methods for identifying changes and distinguishing object categories involved in those changes, respectively. However, the binary changes provided by GCD is often not practical enough, while annotating semantic labels for training SCD models is very expensive. Therefore, there is a novel solution that intuitively dividing changes into three trends (``appear'', ``disappear'' and ``transform'') instead of semantic categories, named it trend change detection (TCD) in this paper. It offers more detailed change information than GCD, while requiring less manual annotation cost than SCD. However, there are limited public data sets with specific trend labels to support TCD application. To address this issue, we propose a softmatch distance which is used to construct a weakly-supervised TCD branch in a simple GCD model, using GCD labels instead of TCD label for training. Furthermore, a strategic approach is presented to successfully explore and extract background information, which is crucial for the weakly-supervised TCD task. The experiment results on four public data sets are highly encouraging, which demonstrates the effectiveness of our proposed model.