Abstract:The lightweight semi-supervised learning (LSL) strategy provides an effective approach of conserving labeled samples and minimizing model inference costs. Prior research has effectively applied knowledge transfer learning and co-training regularization from large to small models in LSL. However, such training strategies are computationally intensive and prone to local optima, thereby increasing the difficulty of finding the optimal solution. This has prompted us to investigate the feasibility of integrating three low-cost scenarios for text mining tasks: limited labeled supervision, lightweight fine-tuning, and rapid-inference small models. We propose NanoNet, a novel framework for lightweight text mining that implements parameter-efficient learning with limited supervision. It employs online knowledge distillation to generate multiple small models and enhances their performance through mutual learning regularization. The entire process leverages parameter-efficient learning, reducing training costs and minimizing supervision requirements, ultimately yielding a lightweight model for downstream inference.




Abstract:Although large language models (LLMs) have made significant strides across various tasks, they still face significant challenges in complex reasoning and planning. For example, even with carefully designed prompts and prior information explicitly provided, GPT-4o achieves only a 7% Final Pass Rate on the TravelPlanner dataset in the sole-planning mode. Similarly, even in the thinking mode, Qwen3-8B-Instruct and DeepSeek-R1-671B, only achieve Final Pass Rates of 5.9% and 40%, respectively. Although well-organized Multi-Agent Systems (MAS) can offer improved collective reasoning, they often suffer from high reasoning costs due to multi-round internal interactions, long per-response latency, and difficulties in end-to-end training. To address these challenges, we propose a general and scalable framework called IMAGINE, short for Integrating Multi-Agent System into One Model. This framework not only integrates the reasoning and planning capabilities of MAS into a single, compact model, but also significantly surpass the capabilities of the MAS through a simple end-to-end training. Through this pipeline, a single small-scale model is not only able to acquire the structured reasoning and planning capabilities of a well-organized MAS but can also significantly outperform it. Experimental results demonstrate that, when using Qwen3-8B-Instruct as the base model and training it with our method, the model achieves an 82.7% Final Pass Rate on the TravelPlanner benchmark, far exceeding the 40% of DeepSeek-R1-671B, while maintaining a much smaller model size.