Abstract:Multimodal Large Language Models (MLLMs) encode images into visual tokens, aligning visual and textual signals within a shared latent space to facilitate crossmodal representation learning. The CLIP model is a widely adopted foundational vision language model whose vision encoder has played a critical role in the development of MLLMs such as LLaVA. However, the CLIP vision encoder suffers from notable limitations including being constrained to only handling fixed input resolutions and a failure to produce separated embeddings for dissimilar images. Replacing the vision encoder of an existing model typically incurs substantial computational costs because such a change often necessitates retraining the entire model pipeline. In this work, we identify two factors which underlie the limitations of the CLIP vision encoder: mesoscopic bias and interpolation bias. To address these issues, we propose QLIP, a drop-in replacement for CLIP that can be seamlessly integrated with existing MLLMs with only a few lines of code and can enhance both coarse-grained and fine-grained visual understanding, without re-training. QLIP is designed around an image quadtree which replaces the standard uniform grid patches with a novel content aware patchification. Our experimental results demonstrate that QLIP improves the general visual question answering accuracy of the LLaVA v1.5 model series across various model sizes--without requiring retraining or fine-tuning of the full MLLM. Notably, QLIP boosts detailed understanding performance on the challenging $V^{\ast}$ benchmark by up to 13.6 percent.
Abstract:Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities across tasks, yet they often exhibit difficulty in distinguishing task-relevant from irrelevant signals, particularly in tasks like Visual Question Answering (VQA), which can lead to susceptibility to misleading or spurious inputs. We refer to this broader limitation as the Cross-Modality Competency Problem: the model's inability to fairly evaluate all modalities. This vulnerability becomes more evident in modality-specific tasks such as image classification or pure text question answering, where models are expected to rely solely on one modality. In such tasks, spurious information from irrelevant modalities often leads to significant performance degradation. We refer to this failure as Modality Interference, which serves as a concrete and measurable instance of the cross-modality competency problem. We further design a perturbation-based causal diagnostic experiment to verify and quantify this problem. To mitigate modality interference, we propose a novel framework to fine-tune MLLMs, including perturbation-based data augmentations with both heuristic perturbations and adversarial perturbations via Projected Gradient Descent (PGD), and a consistency regularization strategy applied to model outputs with original and perturbed inputs. Experiments on multiple benchmark datasets (image-heavy, text-heavy, and VQA tasks) and multiple model families with different scales demonstrate significant improvements in robustness and cross-modality competency, indicating our method's effectiveness in boosting unimodal reasoning ability while enhancing performance on multimodal tasks.
Abstract:Vision-Language Models (VLMs) leverage aligned visual encoders to transform images into visual tokens, allowing them to be processed similarly to text by the backbone large language model (LLM). This unified input paradigm enables VLMs to excel in vision-language tasks such as visual question answering (VQA). To improve fine-grained visual reasoning, recent advancements in vision-language modeling introduce image cropping techniques that feed all encoded sub-images into the model. However, this approach significantly increases the number of visual tokens, leading to inefficiency and potential distractions for the LLM. To address the generalization challenges of image representation in VLMs, we propose a lightweight, universal framework that seamlessly integrates with existing VLMs to enhance their ability to process finegrained details. Our method leverages textual semantics to identify key visual areas, improving VQA performance without requiring any retraining of the VLM. Additionally, it incorporates textual signals into the visual encoding process, enhancing both efficiency and effectiveness. The proposed method, SEMCLIP, strengthens the visual understanding of a 7B VLM, LLaVA-1.5 by 3.3% on average across 7 benchmarks, and particularly by 5.3% on the challenging detailed understanding benchmark V*.
Abstract:The discovery of novel mechanical metamaterials, whose properties are dominated by their engineered structures rather than chemical composition, is a knowledge-intensive and resource-demanding process. To accelerate the design of novel metamaterials, we present MetaScientist, a human-in-the-loop system that integrates advanced AI capabilities with expert oversight with two primary phases: (1) hypothesis generation, where the system performs complex reasoning to generate novel and scientifically sound hypotheses, supported with domain-specific foundation models and inductive biases retrieved from existing literature; (2) 3D structure synthesis, where a 3D structure is synthesized with a novel 3D diffusion model based on the textual hypothesis and refined it with a LLM-based refinement model to achieve better structure properties. At each phase, domain experts iteratively validate the system outputs, and provide feedback and supplementary materials to ensure the alignment of the outputs with scientific principles and human preferences. Through extensive evaluation from human scientists, MetaScientist is able to deliver novel and valid mechanical metamaterial designs that have the potential to be highly impactful in the metamaterial field.
Abstract:Language models have shown impressive in-context-learning capabilities, which allow them to benefit from input prompts and perform better on downstream end tasks. Existing works investigate the mechanisms behind this observation, and propose label-agnostic prompt metrics that can better estimate end-task performances. One popular approach is using perplexity as a way to measure models' familiarity with the prompt. While showing consistent improvements on in-domain tasks, we found that familiarity metrics such as perplexity cannot accurately estimate performance in complicated situations such as task or domain transferring scenarios. In this work, we propose a revised measure called FamiCom, providing a more comprehensive measure for task-agnostic performance estimation. Specifically, FamiCom combines familiarity with \textit{complexity} -- the inherent difficulty of end tasks, which is an important factor missing from current metrics. Experiments show that FamiCom strongly correlates with end-task performances, producing a 0.85 Spearman's correlation, versus 0.43 of familiarity-only ones'. We further apply FamiCom to automatic prompt and demonstration selection, and outperform existing methods and baselines by more than 7.0% in accuracy.
Abstract:We introduce a new on-policy algorithm called Rewarded Region Replay (R3), which significantly improves on PPO in solving environments with discrete action spaces. R3 improves sample efficiency by using a replay buffer which contains past successful trajectories with reward above a certain threshold, which are used to update a PPO agent with importance sampling. Crucially, we discard the importance sampling factors which are above a certain ratio to reduce variance and stabilize training. We found that R3 significantly outperforms PPO in Minigrid environments with sparse rewards and discrete action space, such as DoorKeyEnv and CrossingEnv, and moreover we found that the improvement margin of our method versus baseline PPO increases with the complexity of the environment. We also benchmarked the performance of R3 against DDQN (Double Deep Q-Network), which is a standard baseline in off-policy methods for discrete actions, and found that R3 also outperforms DDQN agent in DoorKeyEnv. Lastly, we adapt the idea of R3 to dense reward setting to obtain the Dense R3 algorithm (or DR3) and benchmarked it against PPO on Cartpole-V1 environment. We found that DR3 outperforms PPO significantly on this dense reward environment. Our code can be found at https://github.com/chry-santhemum/R3.
Abstract:Most language models currently available are prone to self-contradiction during dialogues. To mitigate this issue, this study explores a novel contradictory dialogue processing task that aims to detect and modify contradictory statements in a conversation. This task is inspired by research on context faithfulness and dialogue comprehension, which have demonstrated that the detection and understanding of contradictions often necessitate detailed explanations. We develop a dataset comprising contradictory dialogues, in which one side of the conversation contradicts itself. Each dialogue is accompanied by an explanatory label that highlights the location and details of the contradiction. With this dataset, we present a Red Teaming framework for contradictory dialogue processing. The framework detects and attempts to explain the dialogue, then modifies the existing contradictory content using the explanation. Our experiments demonstrate that the framework improves the ability to detect contradictory dialogues and provides valid explanations. Additionally, it showcases distinct capabilities for modifying such dialogues. Our study highlights the importance of the logical inconsistency problem in conversational AI.
Abstract:We introduce Blink, a new benchmark for multimodal language models (LLMs) that focuses on core visual perception abilities not found in other evaluations. Most of the Blink tasks can be solved by humans "within a blink" (e.g., relative depth estimation, visual correspondence, forensics detection, and multi-view reasoning). However, we find these perception-demanding tasks cast significant challenges for current multimodal LLMs because they resist mediation through natural language. Blink reformats 14 classic computer vision tasks into 3,807 multiple-choice questions, paired with single or multiple images and visual prompting. While humans get 95.70% accuracy on average, Blink is surprisingly challenging for existing multimodal LLMs: even the best-performing GPT-4V and Gemini achieve accuracies of 51.26% and 45.72%, only 13.17% and 7.63% higher than random guessing, indicating that such perception abilities have not "emerged" yet in recent multimodal LLMs. Our analysis also highlights that specialist CV models could solve these problems much better, suggesting potential pathways for future improvements. We believe Blink will stimulate the community to help multimodal LLMs catch up with human-level visual perception.
Abstract:Despite the recent advancement in large language models (LLMs) and their high performances across numerous benchmarks, recent research has unveiled that LLMs suffer from hallucinations and unfaithful reasoning. This work studies a specific type of hallucination induced by semantic associations. Specifically, we investigate to what extent LLMs take shortcuts from certain keyword/entity biases in the prompt instead of following the correct reasoning path. To quantify this phenomenon, we propose a novel probing method and benchmark called EureQA. We start from questions that LLMs will answer correctly with utmost certainty, and mask the important entity with evidence sentence recursively, asking models to find masked entities according to a chain of evidence before answering the question. During the construction of the evidence, we purposefully replace semantic clues (entities) that may lead to the correct answer with distractor clues (evidence) that will not directly lead to the correct answer but require a chain-like reasoning process. We evaluate if models can follow the correct reasoning chain instead of short-cutting through distractor clues. We find that existing LLMs lack the necessary capabilities to follow correct reasoning paths and resist the attempt of greedy shortcuts. We show that the distractor semantic associations often lead to model hallucination, which is strong evidence that questions the validity of current LLM reasoning.
Abstract:Storytelling's captivating potential makes it a fascinating research area, with implications for entertainment, education, therapy, and cognitive studies. In this paper, we propose Affective Story Generator (AffGen) for generating interesting narratives. AffGen introduces "intriguing twists" in narratives by employing two novel techniques-Dynamic Beam Sizing and Affective Reranking. Dynamic Beam Sizing encourages less predictable, more captivating word choices using a contextual multi-arm bandit model. Affective Reranking prioritizes sentence candidates based on affect intensity. Our empirical evaluations, both automatic and human, demonstrate AffGen's superior performance over existing baselines in generating affectively charged and interesting narratives. Our ablation study and analysis provide insights into the strengths and weaknesses of AffGen.