Topic:text to face generation
What is text to face generation? Text-to-face generation is the process of generating images of faces from textual descriptions using deep learning techniques.
Papers and Code
Sep 10, 2025
Abstract:Recent advancements in foundation models, such as the Segment Anything Model (SAM), have significantly impacted medical image segmentation, especially in retinal imaging, where precise segmentation is vital for diagnosis. Despite this progress, current methods face critical challenges: 1) modality ambiguity in textual disease descriptions, 2) a continued reliance on manual prompting for SAM-based workflows, and 3) a lack of a unified framework, with most methods being modality- and task-specific. To overcome these hurdles, we propose CLIP-unified Auto-Prompt Segmentation (\CLAPS), a novel method for unified segmentation across diverse tasks and modalities in retinal imaging. Our approach begins by pre-training a CLIP-based image encoder on a large, multi-modal retinal dataset to handle data scarcity and distribution imbalance. We then leverage GroundingDINO to automatically generate spatial bounding box prompts by detecting local lesions. To unify tasks and resolve ambiguity, we use text prompts enhanced with a unique "modality signature" for each imaging modality. Ultimately, these automated textual and spatial prompts guide SAM to execute precise segmentation, creating a fully automated and unified pipeline. Extensive experiments on 12 diverse datasets across 11 critical segmentation categories show that CLAPS achieves performance on par with specialized expert models while surpassing existing benchmarks across most metrics, demonstrating its broad generalizability as a foundation model.
* BIBM
Via

Sep 09, 2025
Abstract:Medical vision-language models (Med-VLMs) have shown impressive results in tasks such as report generation and visual question answering, but they still face several limitations. Most notably, they underutilize patient metadata and lack integration of clinical diagnostic knowledge. Moreover, most existing models are typically trained from scratch or fine-tuned on large-scale 2D image-text pairs, requiring extensive computational resources, and their effectiveness on 3D medical imaging is often limited due to the absence of structural information. To address these gaps, we propose a data-efficient fine-tuning pipeline to adapt 3D CT-based Med-VLMs for 3D MRI and demonstrate its application in Alzheimer's disease (AD) diagnosis. Our system introduces two key innovations. First, we convert structured metadata into synthetic reports, enriching textual input for improved image-text alignment. Second, we add an auxiliary token trained to predict the mini-mental state examination (MMSE) score, a widely used clinical measure of cognitive function that correlates with AD severity. This provides additional supervision for fine-tuning. Applying lightweight prompt tuning to both image and text modalities, our approach achieves state-of-the-art performance on two AD datasets using 1,500 training images, outperforming existing methods fine-tuned on 10,000 images. Code will be released upon publication.
Via

Sep 09, 2025
Abstract:Click-through rate (CTR) prediction plays an important role in online advertising systems. On the one hand, traditional CTR prediction models capture the collaborative signals in tabular data via feature interaction modeling, but they lose semantics in text. On the other hand, Large Language Models (LLMs) excel in understanding the context and meaning behind text, but they face challenges in capturing collaborative signals and they have long inference latency. In this paper, we aim to leverage the benefits of both types of models and pursue collaboration, semantics and efficiency. We present ELEC, which is an Efficient LLM-Empowered CTR prediction framework. We first adapt an LLM for the CTR prediction task. In order to leverage the ability of the LLM but simultaneously keep efficiency, we utilize the pseudo-siamese network which contains a gain network and a vanilla network. We inject the high-level representation vector generated by the LLM into a collaborative CTR model to form the gain network such that it can take advantage of both tabular modeling and textual modeling. However, its reliance on the LLM limits its efficiency. We then distill the knowledge from the gain network to the vanilla network on both the score level and the representation level, such that the vanilla network takes only tabular data as input, but can still generate comparable performance as the gain network. Our approach is model-agnostic. It allows for the integration with various existing LLMs and collaborative CTR models. Experiments on real-world datasets demonstrate the effectiveness and efficiency of ELEC for CTR prediction.
* SIGIR 2025
Via

Sep 08, 2025
Abstract:Text generating capabilities have undergone a substantial transformation with the introduction of large language models (LLMs). Electroencephalography (EEG)-based text production is still difficult, though, because it requires a lot of data and processing power. This paper introduces a new method that combines the use of the Gemma 2B LLM with a classifier-LLM architecture to incorporate a Recurrent Neural Network (RNN) encoder. Our approach drastically lowers the amount of data and compute power needed while achieving performance close to that of cutting-edge methods. Notably, compared to current methodologies, our methodology delivers an overall performance improvement of 10%. The suggested architecture demonstrates the possibility of effective transfer learning for EEG-based text production, remaining strong and functional even in the face of data limits. This work highlights the potential of integrating LLMs with EEG decoding to improve assistive technologies and improve independence and communication for those with severe motor limitations. Our method pushes the limits of present capabilities and opens new paths for research and application in brain-computer interfaces by efficiently using the strengths of pre-trained language models. This makes EEG-based text production more accessible and efficient.
* 15 pages, 10 figures, 5 tables
Via

Sep 04, 2025
Abstract:Despite the significant advancements of self-play fine-tuning (SPIN), which can transform a weak large language model (LLM) into a strong one through competitive interactions between models of varying capabilities, it still faces challenges in the Text-to-SQL task. SPIN does not generate new information, and the large number of correct SQL queries produced by the opponent model during self-play reduces the main model's ability to generate accurate SQL queries. To address this challenge, we propose a new self-play fine-tuning method tailored for the Text-to-SQL task, called SPFT-SQL. Prior to self-play, we introduce a verification-based iterative fine-tuning approach, which synthesizes high-quality fine-tuning data iteratively based on the database schema and validation feedback to enhance model performance, while building a model base with varying capabilities. During the self-play fine-tuning phase, we propose an error-driven loss method that incentivizes incorrect outputs from the opponent model, enabling the main model to distinguish between correct SQL and erroneous SQL generated by the opponent model, thereby improving its ability to generate correct SQL. Extensive experiments and in-depth analyses on six open-source LLMs and five widely used benchmarks demonstrate that our approach outperforms existing state-of-the-art (SOTA) methods.
* EMNLP 2025 Findings
Via

Sep 05, 2025
Abstract:Sentiment classification in short text datasets faces significant challenges such as class imbalance, limited training samples, and the inherent subjectivity of sentiment labels -- issues that are further intensified by the limited context in short texts. These factors make it difficult to resolve ambiguity and exacerbate data sparsity, hindering effective learning. In this paper, we evaluate the effectiveness of small Transformer-based models (i.e., BERT and RoBERTa, with fewer than 1 billion parameters) for multi-label sentiment classification, with a particular focus on short-text settings. Specifically, we evaluated three key factors influencing model performance: (1) continued domain-specific pre-training, (2) data augmentation using automatically generated examples, specifically generative data augmentation, and (3) architectural variations of the classification head. Our experiment results show that data augmentation improves classification performance, while continued pre-training on augmented datasets can introduce noise rather than boost accuracy. Furthermore, we confirm that modifications to the classification head yield only marginal benefits. These findings provide practical guidance for optimizing BERT-based models in resource-constrained settings and refining strategies for sentiment classification in short-text datasets.
* Accepted at LDD@ECAI 2025
Via

Sep 04, 2025
Abstract:Complex Question Answering (QA) is a fundamental and challenging task in NLP. While large language models (LLMs) exhibit impressive performance in QA, they suffer from significant performance degradation when facing complex and abstract QA tasks due to insufficient reasoning capabilities. Works such as Chain-of-Thought (CoT) and Tree-of-Thought (ToT) aim to enhance LLMs' reasoning abilities, but they face issues such as in-layer redundancy in tree structures and single paths in chain structures. Although some studies utilize Retrieval-Augmented Generation (RAG) methods to assist LLMs in reasoning, the challenge of effectively utilizing large amounts of information involving multiple entities and hops remains critical. To address this, we propose the Matrix of Thought (MoT), a novel and efficient LLM thought structure. MoT explores the problem in both horizontal and vertical dimensions through the "column-cell communication" mechanism, enabling LLMs to actively engage in multi-strategy and deep-level thinking, reducing redundancy within the column cells and enhancing reasoning capabilities. Furthermore, we develop a fact-correction mechanism by constructing knowledge units from retrieved knowledge graph triples and raw text to enhance the initial knowledge for LLM reasoning and correct erroneous answers. This leads to the development of an efficient and accurate QA framework (MTQA). Experimental results show that our framework outperforms state-of-the-art methods on four widely-used datasets in terms of F1 and EM scores, with reasoning time only 14.4\% of the baseline methods, demonstrating both its efficiency and accuracy. The code for this framework is available at https://github.com/lyfiter/mtqa.
Via

Aug 28, 2025
Abstract:Open-ended text generation faces a critical challenge: balancing coherence with diversity in LLM outputs. While contrastive search-based decoding strategies have emerged to address this trade-off, their practical utility is often limited by hyperparameter dependence and high computational costs. We introduce GUARD, a self-adaptive decoding method that effectively balances these competing objectives through a novel "Glocal" uncertainty-driven framework. GUARD combines global entropy estimates with local entropy deviations to integrate both long-term and short-term uncertainty signals. We demonstrate that our proposed global entropy formulation effectively mitigates abrupt variations in uncertainty, such as sudden overconfidence or high entropy spikes, and provides theoretical guarantees of unbiasedness and consistency. To reduce computational overhead, we incorporate a simple yet effective token-count-based penalty into GUARD. Experimental results demonstrate that GUARD achieves a good balance between text diversity and coherence, while exhibiting substantial improvements in generation speed. In a more nuanced comparison study across different dimensions of text quality, both human and LLM evaluators validated its remarkable performance. Our code is available at https://github.com/YecanLee/GUARD.
* Accepted at Findings of the Association for Computational
Linguistics: EMNLP (Findings) 2025
Via

Aug 26, 2025
Abstract:The 2020s have been witnessing a very significant advance in the development of generative artificial intelligence tools, including text generation systems based on large language models. These tools have been increasingly used to generate texts in the most diverse domains -- from technical texts to literary texts --, which might eventually lead to a lower volume of written text production by humans. This article discusses the possibility of a future in which human beings will have lost or significantly decreased their ability to write due to the outsourcing of this activity to machines. This possibility parallels the loss of the ability to write in other moments of human history, such as during the so-called Greek Dark Ages (approx. 1200 BCE - 800 BCE).
* 10 pages
Via

Aug 27, 2025
Abstract:Text-to-image generation has recently seen remarkable success, granting users with the ability to create high-quality images through the use of text. However, contemporary methods face challenges in capturing the precise semantics conveyed by complex multi-object prompts. Consequently, many works have sought to mitigate such semantic misalignments, typically via inference-time schemes that modify the attention layers of the denoising networks. However, prior work has mostly utilized coarse metrics, such as the cosine similarity between text and image CLIP embeddings, or human evaluations, which are challenging to conduct on a larger-scale. In this work, we perform a case study on colors -- a fundamental attribute commonly associated with objects in text prompts, which offer a rich test bed for rigorous evaluation. Our analysis reveals that pretrained models struggle to generate images that faithfully reflect multiple color attributes-far more so than with single-color prompts-and that neither inference-time techniques nor existing editing methods reliably resolve these semantic misalignments. Accordingly, we introduce a dedicated image editing technique, mitigating the issue of multi-object semantic alignment for prompts containing multiple colors. We demonstrate that our approach significantly boosts performance over a wide range of metrics, considering images generated by various text-to-image diffusion-based techniques.
Via
