Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"speech": models, code, and papers

Progressive Joint Modeling in Unsupervised Single-channel Overlapped Speech Recognition

Oct 20, 2017
Zhehuai Chen, Jasha Droppo, Jinyu Li, Wayne Xiong

Unsupervised single-channel overlapped speech recognition is one of the hardest problems in automatic speech recognition (ASR). Permutation invariant training (PIT) is a state of the art model-based approach, which applies a single neural network to solve this single-input, multiple-output modeling problem. We propose to advance the current state of the art by imposing a modular structure on the neural network, applying a progressive pretraining regimen, and improving the objective function with transfer learning and a discriminative training criterion. The modular structure splits the problem into three sub-tasks: frame-wise interpreting, utterance-level speaker tracing, and speech recognition. The pretraining regimen uses these modules to solve progressively harder tasks. Transfer learning leverages parallel clean speech to improve the training targets for the network. Our discriminative training formulation is a modification of standard formulations, that also penalizes competing outputs of the system. Experiments are conducted on the artificial overlapped Switchboard and hub5e-swb dataset. The proposed framework achieves over 30% relative improvement of WER over both a strong jointly trained system, PIT for ASR, and a separately optimized system, PIT for speech separation with clean speech ASR model. The improvement comes from better model generalization, training efficiency and the sequence level linguistic knowledge integration.

* IEEE/ACM Transactions on Audio, Speech, and Language Processing, 26 (2018) 184-196 
* submitted to TASLP, 07/20/2017; accepted by TASLP, 10/13/2017 

  Access Paper or Ask Questions

Towards Unsupervised Speech Recognition and Synthesis with Quantized Speech Representation Learning

Oct 28, 2019
Alexander H. Liu, Tao Tu, Hung-yi Lee, Lin-shan Lee

In this paper we propose a Sequential Representation Quantization AutoEncoder (SeqRQ-AE) to learn from primarily unpaired audio data and produce sequences of representations very close to phoneme sequences of speech utterances. This is achieved by proper temporal segmentation to make the representations phoneme-synchronized, and proper phonetic clustering to have total number of distinct representations close to the number of phonemes. Mapping between the distinct representations and phonemes is learned from a small amount of annotated paired data. Preliminary experiments on LJSpeech demonstrated the learned representations for vowels have relative locations in latent space in good parallel to that shown in the IPA vowel chart defined by linguistics experts. With less than 20 minutes of annotated speech, our method outperformed existing methods on phoneme recognition and is able to synthesize intelligible speech that beats our baseline model.

* under review ICASSP 2020 

  Access Paper or Ask Questions

Deep speech inpainting of time-frequency masks

Oct 22, 2019
Mikolaj Kegler, Pierre Beckmann, Milos Cernak

In particularly noisy environments, transient loud intrusions can completely overpower parts of the speech signal, leading to an inevitable loss of information. Recent algorithms for noise suppression often yield impressive results but tend to struggle when the signal-to-noise ratio (SNR) of the mixture is low or when parts of the signal are missing. To address these issues, here we introduce an end-to-end framework for the retrieval of missing or severely distorted parts of time-frequency representation of speech, from the short-term context, thus speech inpainting. The framework is based on a convolutional U-Net trained via deep feature losses, obtained through speechVGG, a deep speech feature extractor pre-trained on the word classification task. Our evaluation results demonstrate that the proposed framework is effective at recovering large portions of missing or distorted parts of speech. Specifically, it yields notable improvements in STOI & PESQ objective metrics, as assessed using the LibriSpeech dataset.

* ICASSP 2020 submission 

  Access Paper or Ask Questions

Cross-domain Dialogue Policy Transfer via Simultaneous Speech-act and Slot Alignment

Apr 20, 2018
Kaixiang Mo, Yu Zhang, Qiang Yang, Pascale Fung

Dialogue policy transfer enables us to build dialogue policies in a target domain with little data by leveraging knowledge from a source domain with plenty of data. Dialogue sentences are usually represented by speech-acts and domain slots, and the dialogue policy transfer is usually achieved by assigning a slot mapping matrix based on human heuristics. However, existing dialogue policy transfer methods cannot transfer across dialogue domains with different speech-acts, for example, between systems built by different companies. Also, they depend on either common slots or slot entropy, which are not available when the source and target slots are totally disjoint and no database is available to calculate the slot entropy. To solve this problem, we propose a Policy tRansfer across dOMaIns and SpEech-acts (PROMISE) model, which is able to transfer dialogue policies across domains with different speech-acts and disjoint slots. The PROMISE model can learn to align different speech-acts and slots simultaneously, and it does not require common slots or the calculation of the slot entropy. Experiments on both real-world dialogue data and simulations demonstrate that PROMISE model can effectively transfer dialogue policies across domains with different speech-acts and disjoint slots.

* v7 

  Access Paper or Ask Questions

Effective parameter estimation methods for an ExcitNet model in generative text-to-speech systems

May 21, 2019
Ohsung Kwon, Eunwoo Song, Jae-Min Kim, Hong-Goo Kang

In this paper, we propose a high-quality generative text-to-speech (TTS) system using an effective spectrum and excitation estimation method. Our previous research verified the effectiveness of the ExcitNet-based speech generation model in a parametric TTS framework. However, the challenge remains to build a high-quality speech synthesis system because auxiliary conditional features estimated by a simple deep neural network often contain large prediction errors, and the errors are inevitably propagated throughout the autoregressive generation process of the ExcitNet vocoder. To generate more natural speech signals, we exploited a sequence-to-sequence (seq2seq) acoustic model with an attention-based generative network (e.g., Tacotron 2) to estimate the condition parameters of the ExcitNet vocoder. Because the seq2seq acoustic model accurately estimates spectral parameters, and because the ExcitNet model effectively generates the corresponding time-domain excitation signals, combining these two models can synthesize natural speech signals. Furthermore, we verified the merit of the proposed method in producing expressive speech segments by adopting a global style token-based emotion embedding method. The experimental results confirmed that the proposed system significantly outperforms the systems with a similarly configured conventional WaveNet vocoder and our best prior parametric TTS counterpart.

* 5 pages, 3 figures, 3 tables, submitted to Speech Synthesis Workshop 2019 

  Access Paper or Ask Questions

Towards Unsupervised Automatic Speech Recognition Trained by Unaligned Speech and Text only

Aug 11, 2018
Yi-Chen Chen, Chia-Hao Shen, Sung-Feng Huang, Hung-yi Lee

Automatic speech recognition (ASR) has been widely researched with supervised approaches, while many low-resourced languages lack audio-text aligned data, and supervised methods cannot be applied on them. In this work, we propose a framework to achieve unsupervised ASR on a read English speech dataset, where audio and text are unaligned. In the first stage, each word-level audio segment in the utterances is represented by a vector representation extracted by a sequence-of-sequence autoencoder, in which phonetic information and speaker information are disentangled. Secondly, semantic embeddings of audio segments are trained from the vector representations using a skip-gram model. Last but not the least, an unsupervised method is utilized to transform semantic embeddings of audio segments to text embedding space, and finally the transformed embeddings are mapped to words. With the above framework, we are towards unsupervised ASR trained by unaligned text and speech only.

* Code is released: https://github.com/grtzsohalf/Towards-Unsupervised-ASR 

  Access Paper or Ask Questions

The NTNU System for Formosa Speech Recognition Challenge 2020

Apr 20, 2021
Fu-An Chao, Tien-Hong Lo, Shi-Yan Weng, Shih-Hsuan Chiu, Yao-Ting Sung, Berlin Chen

This paper describes the NTNU ASR system participating in the Formosa Speech Recognition Challenge 2020 (FSR-2020) supported by the Formosa Speech in the Wild project (FSW). FSR-2020 aims at fostering the development of Taiwanese speech recognition. Apart from the issues on tonal and dialectical variations of the Taiwanese language, speech artificially contaminated with different types of real-world noise also has to be dealt with in the final test stage; all of these make FSR-2020 much more challenging than before. To work around the under-resourced issue, the main technical aspects of our ASR system include various deep learning techniques, such as transfer learning, semi-supervised learning, front-end speech enhancement and model ensemble, as well as data cleansing and data augmentation conducted on the training data. With the best configuration, our system takes the first place among all participating systems in Track 3.

* 17 pages, 3 figures, Submitted for publication 

  Access Paper or Ask Questions

<<
72
73
74
75
76
77
78
79
80
81
82
83
84
>>