Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Semantically Coherent Out-of-Distribution Detection



Jingkang Yang , Haoqi Wang , Litong Feng , Xiaopeng Yan , Huabin Zheng , Wayne Zhang , Ziwei Liu

* 15 pages, 7 figures. Accepted by ICCV-2021. Project page: https://jingkang50.github.io/projects/scood 

   Access Paper or Ask Questions

Progressive Representative Labeling for Deep Semi-Supervised Learning



Xiaopeng Yan , Riquan Chen , Litong Feng , Jingkang Yang , Huabin Zheng , Wayne Zhang


   Access Paper or Ask Questions

Webly Supervised Image Classification with Metadata: Automatic Noisy Label Correction via Visual-Semantic Graph



Jingkang Yang , Weirong Chen , Litong Feng , Xiaopeng Yan , Huabin Zheng , Wayne Zhang

* Accepted to ACM Multimedia 2020 (Oral) 

   Access Paper or Ask Questions

Webly Supervised Image Classification with Self-Contained Confidence



Jingkang Yang , Litong Feng , Weirong Chen , Xiaopeng Yan , Huabin Zheng , Ping Luo , Wayne Zhang

* 16 pages, 4 figures, Accepted to ECCV 2020 

   Access Paper or Ask Questions

Meta R-CNN : Towards General Solver for Instance-level Low-shot Learning



Xiaopeng Yan , Ziliang Chen , Anni Xu , Xiaoxi Wang , Xiaodan Liang , Liang Lin

* Published in ICCV-2019. Project: https://yanxp.github.io/metarcnn.html 

   Access Paper or Ask Questions

Multivariate-Information Adversarial Ensemble for Scalable Joint Distribution Matching



Ziliang Chen , Zhanfu Yang , Xiaoxi Wang , Xiaodan Liang , Xiaopeng Yan , Guanbin Li , Liang Lin

* ICML-19 

   Access Paper or Ask Questions

Cost-effective Object Detection: Active Sample Mining with Switchable Selection Criteria



Keze Wang , Liang Lin , Xiaopeng Yan , Ziliang Chen , Dongyu Zhang , Lei Zhang

* Automatically determining whether an unlabeled sample should be manually annotated or pseudo-labeled via a novel self-learning process (Accepted by TNNLS 2018) The source code is available at http://kezewang.com/codes/ASM_ver1.zip 

   Access Paper or Ask Questions

Towards Human-Machine Cooperation: Self-supervised Sample Mining for Object Detection



Keze Wang , Xiaopeng Yan , Dongyu Zhang , Lei Zhang , Liang Lin

* We enabled to mine from unlabeled or partially labeled data to boost object detection (Accepted by CVPR 2018) The source code is available at http://kezewang.com/codes/SSM_CVPR.zip 

   Access Paper or Ask Questions