What is speech recognition? Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
Papers and Code
May 16, 2025
Abstract:Automatic Speech Recognition (ASR) systems have become ubiquitous in everyday applications, yet significant disparities in performance across diverse demographic groups persist. In this work, we introduce the ASR-FAIRBENCH leaderboard which is designed to assess both the accuracy and equity of ASR models in real-time. Leveraging the Meta's Fair-Speech dataset, which captures diverse demographic characteristics, we employ a mixed-effects Poisson regression model to derive an overall fairness score. This score is integrated with traditional metrics like Word Error Rate (WER) to compute the Fairness Adjusted ASR Score (FAAS), providing a comprehensive evaluation framework. Our approach reveals significant performance disparities in SOTA ASR models across demographic groups and offers a benchmark to drive the development of more inclusive ASR technologies.
* Paper accepted at INTERSPEECH 2025
Via

May 20, 2025
Abstract:Despite significant progress in neural spoken dialog systems, personality-aware conversation agents -- capable of adapting behavior based on personalities -- remain underexplored due to the absence of personality annotations in speech datasets. We propose a pipeline that preprocesses raw audio recordings to create a dialogue dataset annotated with timestamps, response types, and emotion/sentiment labels. We employ an automatic speech recognition (ASR) system to extract transcripts and timestamps, then generate conversation-level annotations. Leveraging these annotations, we design a system that employs large language models to predict conversational personality. Human evaluators were engaged to identify conversational characteristics and assign personality labels. Our analysis demonstrates that the proposed system achieves stronger alignment with human judgments compared to existing approaches.
* This is accepted to Interspeech 2025; Added an extra page for
supplementary figures; Project page:
https://github.com/shinshoji01/Personality-Prediction-for-Conversation-Agents
Via

May 23, 2025
Abstract:Speaker anonymization seeks to conceal a speaker's identity while preserving the utility of their speech. The achieved privacy is commonly evaluated with a speaker recognition model trained on anonymized speech. Although this represents a strong attack, it is unclear which aspects of speech are exploited to identify the speakers. Our research sets out to unveil these aspects. It starts with kNN-VC, a powerful voice conversion model that performs poorly as an anonymization system, presumably because of prosody leakage. To test this hypothesis, we extend kNN-VC with two interpretable components that anonymize the duration and variation of phones. These components increase privacy significantly, proving that the studied prosodic factors encode speaker identity and are exploited by the privacy attack. Additionally, we show that changes in the target selection algorithm considerably influence the outcome of the privacy attack.
* Accepted by Interspeech 2025
Via

May 25, 2025
Abstract:This study presents FiLLM, a Filipino-optimized large language model, designed to enhance natural language processing (NLP) capabilities in the Filipino language. Built upon the SeaLLM-7B 2.5 model, FiLLM leverages Low-Rank Adaptation (LoRA) fine-tuning to optimize memory efficiency while maintaining task-specific performance. The model was trained and evaluated on diverse Filipino datasets to address key NLP tasks, including Named Entity Recognition (NER), Part-of-Speech (POS) tagging, Dependency Parsing, and Text Summarization. Performance comparisons with the CalamanCy model were conducted using F1 Score, Precision, Recall, Compression Rate, and Keyword Overlap metrics. Results indicate that Calamancy outperforms FILLM in several aspects, demonstrating its effectiveness in processing Filipino text with improved linguistic comprehension and adaptability. This research contributes to the advancement of Filipino NLP applications by providing an optimized, efficient, and scalable language model tailored for local linguistic needs.
Via

May 16, 2025
Abstract:Monaural multi-speaker automatic speech recognition (ASR) remains challenging due to data scarcity and the intrinsic difficulty of recognizing and attributing words to individual speakers, particularly in overlapping speech. Recent advances have driven the shift from cascade systems to end-to-end (E2E) architectures, which reduce error propagation and better exploit the synergy between speech content and speaker identity. Despite rapid progress in E2E multi-speaker ASR, the field lacks a comprehensive review of recent developments. This survey provides a systematic taxonomy of E2E neural approaches for multi-speaker ASR, highlighting recent advances and comparative analysis. Specifically, we analyze: (1) architectural paradigms (SIMO vs.~SISO) for pre-segmented audio, analyzing their distinct characteristics and trade-offs; (2) recent architectural and algorithmic improvements based on these two paradigms; (3) extensions to long-form speech, including segmentation strategy and speaker-consistent hypothesis stitching. Further, we (4) evaluate and compare methods across standard benchmarks. We conclude with a discussion of open challenges and future research directions towards building robust and scalable multi-speaker ASR.
* 13 pages. Submitted to IEEE/ACM Transaction on Audio Speech and
Language Processing (TASLP)
Via

May 20, 2025
Abstract:Deep neural networks have achieved state-of-the-art results in a wide range of applications, from natural language processing and computer vision to speech recognition. However, as tasks become increasingly complex, model sizes continue to grow, posing challenges in latency and memory efficiency. To meet these constraints, post-training quantization has emerged as a promising solution. In this paper, we propose a novel hardware-efficient quantization and inference scheme that exploits hardware advantages with minimal accuracy degradation. Specifically, we introduce a W4A8 scheme, where weights are quantized and stored using 4-bit integer precision, and inference computations are performed using 8-bit floating-point arithmetic, demonstrating significant speedups and improved memory utilization compared to 16-bit operations, applicable on various modern accelerators. To mitigate accuracy loss, we develop a novel quantization algorithm, dubbed Dual Precision Quantization (DPQ), that leverages the unique structure of our scheme without introducing additional inference overhead. Experimental results demonstrate improved performance (i.e., increased throughput) while maintaining tolerable accuracy degradation relative to the full-precision model.
* Accepted at eLVM Workshop, CVPR, 2025
Via

May 20, 2025
Abstract:We introduce Vox-Profile, a comprehensive benchmark to characterize rich speaker and speech traits using speech foundation models. Unlike existing works that focus on a single dimension of speaker traits, Vox-Profile provides holistic and multi-dimensional profiles that reflect both static speaker traits (e.g., age, sex, accent) and dynamic speech properties (e.g., emotion, speech flow). This benchmark is grounded in speech science and linguistics, developed with domain experts to accurately index speaker and speech characteristics. We report benchmark experiments using over 15 publicly available speech datasets and several widely used speech foundation models that target various static and dynamic speaker and speech properties. In addition to benchmark experiments, we showcase several downstream applications supported by Vox-Profile. First, we show that Vox-Profile can augment existing speech recognition datasets to analyze ASR performance variability. Vox-Profile is also used as a tool to evaluate the performance of speech generation systems. Finally, we assess the quality of our automated profiles through comparison with human evaluation and show convergent validity. Vox-Profile is publicly available at: https://github.com/tiantiaf0627/vox-profile-release.
Via

May 16, 2025
Abstract:Automatic Speech Recognition (ASR) technologies have transformed human-computer interaction; however, low-resource languages in Africa remain significantly underrepresented in both research and practical applications. This study investigates the major challenges hindering the development of ASR systems for these languages, which include data scarcity, linguistic complexity, limited computational resources, acoustic variability, and ethical concerns surrounding bias and privacy. The primary goal is to critically analyze these barriers and identify practical, inclusive strategies to advance ASR technologies within the African context. Recent advances and case studies emphasize promising strategies such as community-driven data collection, self-supervised and multilingual learning, lightweight model architectures, and techniques that prioritize privacy. Evidence from pilot projects involving various African languages showcases the feasibility and impact of customized solutions, which encompass morpheme-based modeling and domain-specific ASR applications in sectors like healthcare and education. The findings highlight the importance of interdisciplinary collaboration and sustained investment to tackle the distinct linguistic and infrastructural challenges faced by the continent. This study offers a progressive roadmap for creating ethical, efficient, and inclusive ASR systems that not only safeguard linguistic diversity but also improve digital accessibility and promote socioeconomic participation for speakers of African languages.
Via

May 19, 2025
Abstract:OpenAI's Whisper has achieved significant success in Automatic Speech Recognition. However, it has consistently been found to exhibit hallucination issues, particularly in non-speech segments, which limits its broader application in complex industrial settings. In this paper, we introduce a novel method to reduce Whisper's hallucination on non-speech segments without using any pre- or post-possessing techniques. Specifically, we benchmark the contribution of each self-attentional head in the Whisper-large-v3 decoder to the hallucination problem by performing a head-wise mask. Our findings reveal that only 3 of the 20 heads account for over 75% of the hallucinations on the UrbanSound dataset. We then fine-tune these three crazy heads using a collection of non-speech data. The results show that our best fine-tuned model, namely Calm-Whisper, achieves over 80% reduction in non-speech hallucination with only less than 0.1% WER degradation on LibriSpeech test-clean and test-other.
* Accepted to Interspeech 2025
Via

May 19, 2025
Abstract:The scope of the International Workshop on Spoken Language Translation (IWSLT) has recently broadened beyond traditional Speech Translation (ST) to encompass a wider array of tasks, including Speech Question Answering and Summarization. This shift is partly driven by the growing capabilities of modern systems, particularly with the success of Large Language Models (LLMs). In this paper, we present the Karlsruhe Institute of Technology's submissions for the Offline ST and Instruction Following (IF) tracks, where we leverage LLMs to enhance performance across all tasks. For the Offline ST track, we propose a pipeline that employs multiple automatic speech recognition systems, whose outputs are fused using an LLM with document-level context. This is followed by a two-step translation process, incorporating additional refinement step to improve translation quality. For the IF track, we develop an end-to-end model that integrates a speech encoder with an LLM to perform a wide range of instruction-following tasks. We complement it with a final document-level refinement stage to further enhance output quality by using contextual information.
Via
