Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"speech recognition": models, code, and papers

ESE: Efficient Speech Recognition Engine with Sparse LSTM on FPGA

Feb 20, 2017
Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang Xie, Hong Luo, Song Yao, Yu Wang, Huazhong Yang, William J. Dally

Long Short-Term Memory (LSTM) is widely used in speech recognition. In order to achieve higher prediction accuracy, machine learning scientists have built larger and larger models. Such large model is both computation intensive and memory intensive. Deploying such bulky model results in high power consumption and leads to high total cost of ownership (TCO) of a data center. In order to speedup the prediction and make it energy efficient, we first propose a load-balance-aware pruning method that can compress the LSTM model size by 20x (10x from pruning and 2x from quantization) with negligible loss of the prediction accuracy. The pruned model is friendly for parallel processing. Next, we propose scheduler that encodes and partitions the compressed model to each PE for parallelism, and schedule the complicated LSTM data flow. Finally, we design the hardware architecture, named Efficient Speech Recognition Engine (ESE) that works directly on the compressed model. Implemented on Xilinx XCKU060 FPGA running at 200MHz, ESE has a performance of 282 GOPS working directly on the compressed LSTM network, corresponding to 2.52 TOPS on the uncompressed one, and processes a full LSTM for speech recognition with a power dissipation of 41 Watts. Evaluated on the LSTM for speech recognition benchmark, ESE is 43x and 3x faster than Core i7 5930k CPU and Pascal Titan X GPU implementations. It achieves 40x and 11.5x higher energy efficiency compared with the CPU and GPU respectively.

* Accepted as full paper in FPGA'17, Monterey, CA; Also appeared at 1st International Workshop on Efficient Methods for Deep Neural Networks at NIPS 2016, Barcelona, Spain 

Towards End-to-end Unsupervised Speech Recognition

Apr 05, 2022
Alexander H. Liu, Wei-Ning Hsu, Michael Auli, Alexei Baevski

Unsupervised speech recognition has shown great potential to make Automatic Speech Recognition (ASR) systems accessible to every language. However, existing methods still heavily rely on hand-crafted pre-processing. Similar to the trend of making supervised speech recognition end-to-end, we introduce \wvu~which does away with all audio-side pre-processing and improves accuracy through better architecture. In addition, we introduce an auxiliary self-supervised objective that ties model predictions back to the input. Experiments show that \wvu~improves unsupervised recognition results across different languages while being conceptually simpler.

* Preprint 

Noise-robust Speech Recognition with 10 Minutes Unparalleled In-domain Data

Mar 29, 2022
Chen Chen, Nana Hou, Yuchen Hu, Shashank Shirol, Eng Siong Chng

Noise-robust speech recognition systems require large amounts of training data including noisy speech data and corresponding transcripts to achieve state-of-the-art performances in face of various practical environments. However, such plenty of in-domain data is not always available in the real-life world. In this paper, we propose a generative adversarial network to simulate noisy spectrum from the clean spectrum (Simu-GAN), where only 10 minutes of unparalleled in-domain noisy speech data is required as labels. Furthermore, we also propose a dual-path speech recognition system to improve the robustness of the system under noisy conditions. Experimental results show that the proposed speech recognition system achieves 7.3% absolute improvement with simulated noisy data by Simu-GAN over the best baseline in terms of word error rate (WER).

* Accepted by ICASSP2022 

Transfer Learning from Adult to Children for Speech Recognition: Evaluation, Analysis and Recommendations

May 08, 2018
Prashanth Gurunath Shivakumar, Panayiotis Georgiou

Children speech recognition is challenging mainly due to the inherent high variability in children's physical and articulatory characteristics and expressions. This variability manifests in both acoustic constructs and linguistic usage due to the rapidly changing developmental stage in children's life. Part of the challenge is due to the lack of large amounts of available children speech data for efficient modeling. This work attempts to address the key challenges using transfer learning from adult's models to children's models in a Deep Neural Network (DNN) framework for children's Automatic Speech Recognition (ASR) task evaluating on multiple children's speech corpora with a large vocabulary. The paper presents a systematic and an extensive analysis of the proposed transfer learning technique considering the key factors affecting children's speech recognition from prior literature. Evaluations are presented on (i) comparisons of earlier GMM-HMM and the newer DNN Models, (ii) effectiveness of standard adaptation techniques versus transfer learning, (iii) various adaptation configurations in tackling the variabilities present in children speech, in terms of (a) acoustic spectral variability, and (b) pronunciation variability and linguistic constraints. Our Analysis spans over (i) number of DNN model parameters (for adaptation), (ii) amount of adaptation data, (iii) ages of children, (iv) age dependent-independent adaptation. Finally, we provide Recommendations on (i) the favorable strategies over various aforementioned - analyzed parameters, and (ii) potential future research directions and relevant challenges/problems persisting in DNN based ASR for children's speech.


Integrated speech and morphological processing in a connectionist continuous speech understanding for Korean

Mar 18, 1996
Geunbae Lee, Jong-Hyeok Lee

A new tightly coupled speech and natural language integration model is presented for a TDNN-based continuous possibly large vocabulary speech recognition system for Korean. Unlike popular n-best techniques developed for integrating mainly HMM-based speech recognition and natural language processing in a {\em word level}, which is obviously inadequate for morphologically complex agglutinative languages, our model constructs a spoken language system based on a {\em morpheme-level} speech and language integration. With this integration scheme, the spoken Korean processing engine (SKOPE) is designed and implemented using a TDNN-based diphone recognition module integrated with a Viterbi-based lexical decoding and symbolic phonological/morphological co-analysis. Our experiment results show that the speaker-dependent continuous {\em eojeol} (Korean word) recognition and integrated morphological analysis can be achieved with over 80.6% success rate directly from speech inputs for the middle-level vocabularies.

* latex source with a4 style, 15 pages, to be published in computer processing of oriental language journal 

Self-supervised Learning with Random-projection Quantizer for Speech Recognition

Feb 03, 2022
Chung-Cheng Chiu, James Qin, Yu Zhang, Jiahui Yu, Yonghui Wu

We present a simple and effective self-supervised learning approach for speech recognition. The approach learns a model to predict the masked speech signals, in the form of discrete labels generated with a random-projection quantizer. In particular the quantizer projects speech inputs with a randomly initialized matrix, and does a nearest-neighbor lookup in a randomly-initialized codebook. Neither the matrix nor the codebook is updated during self-supervised learning. Since the random-projection quantizer is not trained and is separated from the speech recognition model, the design makes the approach flexible and is compatible with universal speech recognition architecture. On LibriSpeech our approach achieves similar word-error-rates as previous work using self-supervised learning with non-streaming models, and provides lower word-error-rates and latency than wav2vec 2.0 and w2v-BERT with streaming models. On multilingual tasks the approach also provides significant improvement over wav2vec 2.0 and w2v-BERT.


Progressive Joint Modeling in Unsupervised Single-channel Overlapped Speech Recognition

Oct 20, 2017
Zhehuai Chen, Jasha Droppo, Jinyu Li, Wayne Xiong

Unsupervised single-channel overlapped speech recognition is one of the hardest problems in automatic speech recognition (ASR). Permutation invariant training (PIT) is a state of the art model-based approach, which applies a single neural network to solve this single-input, multiple-output modeling problem. We propose to advance the current state of the art by imposing a modular structure on the neural network, applying a progressive pretraining regimen, and improving the objective function with transfer learning and a discriminative training criterion. The modular structure splits the problem into three sub-tasks: frame-wise interpreting, utterance-level speaker tracing, and speech recognition. The pretraining regimen uses these modules to solve progressively harder tasks. Transfer learning leverages parallel clean speech to improve the training targets for the network. Our discriminative training formulation is a modification of standard formulations, that also penalizes competing outputs of the system. Experiments are conducted on the artificial overlapped Switchboard and hub5e-swb dataset. The proposed framework achieves over 30% relative improvement of WER over both a strong jointly trained system, PIT for ASR, and a separately optimized system, PIT for speech separation with clean speech ASR model. The improvement comes from better model generalization, training efficiency and the sequence level linguistic knowledge integration.

* IEEE/ACM Transactions on Audio, Speech, and Language Processing, 26 (2018) 184-196 
* submitted to TASLP, 07/20/2017; accepted by TASLP, 10/13/2017 

Encrypted Speech Recognition using Deep Polynomial Networks

May 11, 2019
Shi-Xiong Zhang, Yifan Gong, Dong Yu

The cloud-based speech recognition/API provides developers or enterprises an easy way to create speech-enabled features in their applications. However, sending audios about personal or company internal information to the cloud, raises concerns about the privacy and security issues. The recognition results generated in cloud may also reveal some sensitive information. This paper proposes a deep polynomial network (DPN) that can be applied to the encrypted speech as an acoustic model. It allows clients to send their data in an encrypted form to the cloud to ensure that their data remains confidential, at mean while the DPN can still make frame-level predictions over the encrypted speech and return them in encrypted form. One good property of the DPN is that it can be trained on unencrypted speech features in the traditional way. To keep the cloud away from the raw audio and recognition results, a cloud-local joint decoding framework is also proposed. We demonstrate the effectiveness of model and framework on the Switchboard and Cortana voice assistant tasks with small performance degradation and latency increased comparing with the traditional cloud-based DNNs.

* ICASSP 2019, [email protected] 

Synchronous Speech Recognition and Speech-to-Text Translation with Interactive Decoding

Dec 16, 2019
Yuchen Liu, Jiajun Zhang, Hao Xiong, Long Zhou, Zhongjun He, Hua Wu, Haifeng Wang, Chengqing Zong

Speech-to-text translation (ST), which translates source language speech into target language text, has attracted intensive attention in recent years. Compared to the traditional pipeline system, the end-to-end ST model has potential benefits of lower latency, smaller model size, and less error propagation. However, it is notoriously difficult to implement such a model without transcriptions as intermediate. Existing works generally apply multi-task learning to improve translation quality by jointly training end-to-end ST along with automatic speech recognition (ASR). However, different tasks in this method cannot utilize information from each other, which limits the improvement. Other works propose a two-stage model where the second model can use the hidden state from the first one, but its cascade manner greatly affects the efficiency of training and inference process. In this paper, we propose a novel interactive attention mechanism which enables ASR and ST to perform synchronously and interactively in a single model. Specifically, the generation of transcriptions and translations not only relies on its previous outputs but also the outputs predicted in the other task. Experiments on TED speech translation corpora have shown that our proposed model can outperform strong baselines on the quality of speech translation and achieve better speech recognition performances as well.

* Accepted by AAAI 2020 

Improving Hypernasality Estimation with Automatic Speech Recognition in Cleft Palate Speech

Aug 10, 2022
Kaitao Song, Teng Wan, Bixia Wang, Huiqiang Jiang, Luna Qiu, Jiahang Xu, Liping Jiang, Qun Lou, Yuqing Yang, Dongsheng Li, Xudong Wang, Lili Qiu

Hypernasality is an abnormal resonance in human speech production, especially in patients with craniofacial anomalies such as cleft palate. In clinical application, hypernasality estimation is crucial in cleft palate diagnosis, as its results determine the subsequent surgery and additional speech therapy. Therefore, designing an automatic hypernasality assessment method will facilitate speech-language pathologists to make precise diagnoses. Existing methods for hypernasality estimation only conduct acoustic analysis based on low-resource cleft palate dataset, by using statistical or neural network-based features. In this paper, we propose a novel approach that uses automatic speech recognition model to improve hypernasality estimation. Specifically, we first pre-train an encoder-decoder framework in an automatic speech recognition (ASR) objective by using speech-to-text dataset, and then fine-tune ASR encoder on the cleft palate dataset for hypernasality estimation. Benefiting from such design, our model for hypernasality estimation can enjoy the advantages of ASR model: 1) compared with low-resource cleft palate dataset, the ASR task usually includes large-scale speech data in the general domain, which enables better model generalization; 2) the text annotations in ASR dataset guide model to extract better acoustic features. Experimental results on two cleft palate datasets demonstrate that our method achieves superior performance compared with previous approaches.

* Accepted by InterSpeech 2022