Abstract:With recent advances in modeling and the increasing amount of supervised training data, automatic speech recognition (ASR) systems have achieved remarkable performance on general speech. However, the word error rate (WER) of state-of-the-art ASR remains high for named entities. Since named entities are often the most critical keywords, misrecognizing them can affect all downstream applications, especially when the ASR system functions as the front end of a complex system. In this paper, we introduce a large language model (LLM) revision mechanism to revise incorrect named entities in ASR predictions by leveraging the LLM's reasoning ability as well as local context (e.g., lecture notes) containing a set of correct named entities. Finally, we introduce the NER-MIT-OpenCourseWare dataset, containing 45 hours of data from MIT courses for development and testing. On this dataset, our proposed technique achieves up to 30\% relative WER reduction for named entities.
Abstract:Monaural multi-speaker automatic speech recognition (ASR) remains challenging due to data scarcity and the intrinsic difficulty of recognizing and attributing words to individual speakers, particularly in overlapping speech. Recent advances have driven the shift from cascade systems to end-to-end (E2E) architectures, which reduce error propagation and better exploit the synergy between speech content and speaker identity. Despite rapid progress in E2E multi-speaker ASR, the field lacks a comprehensive review of recent developments. This survey provides a systematic taxonomy of E2E neural approaches for multi-speaker ASR, highlighting recent advances and comparative analysis. Specifically, we analyze: (1) architectural paradigms (SIMO vs.~SISO) for pre-segmented audio, analyzing their distinct characteristics and trade-offs; (2) recent architectural and algorithmic improvements based on these two paradigms; (3) extensions to long-form speech, including segmentation strategy and speaker-consistent hypothesis stitching. Further, we (4) evaluate and compare methods across standard benchmarks. We conclude with a discussion of open challenges and future research directions towards building robust and scalable multi-speaker ASR.
Abstract:Recent work on discrete speech tokenization has paved the way for models that can seamlessly perform multiple tasks across modalities, e.g., speech recognition, text to speech, speech to speech translation. Moreover, large language models (LLMs) pretrained from vast text corpora contain rich linguistic information that can improve accuracy in a variety of tasks. In this paper, we present a decoder-only Discrete Multimodal Language Model (DMLM), which can be flexibly applied to multiple tasks (ASR, T2S, S2TT, etc.) and modalities (text, speech, vision). We explore several critical aspects of discrete multi-modal models, including the loss function, weight initialization, mixed training supervision, and codebook. Our results show that DMLM benefits significantly, across multiple tasks and datasets, from a combination of supervised and unsupervised training. Moreover, for ASR, it benefits from initializing DMLM from a pretrained LLM, and from a codebook derived from Whisper activations.