Many photography websites such as Flickr, 500px, Unsplash, and Adobe Behance are used by amateur and professional photography enthusiasts. Unlike content-based image search, such users of photography websites are not just looking for photos with certain content, but more generally for photos with a certain photographic "aesthetic". In this context, we explore personalized photo recommendation and propose two aesthetic feature extraction methods based on (i) color space and (ii) deep style transfer embeddings. Using a dataset from 500px, we evaluate how these features can be best leveraged by collaborative filtering methods and show that (ii) provides a significant boost in photo recommendation performance.
This research will proposed a new kind of relatively low cost autonomous UAV that will enable farmers to make just in time mosaics of aerial photo of their crop. These mosaics of aerial photo should be able to be produced with relatively low cost and within the 24 hours of acquisition constraint. The autonomous UAV will be equipped with payload management system specifically developed for rapid aerial mapping. As mentioned before turn around time is the key factor, so accuracy is not the main focus (not orthorectified aerial mapping). This system will also be equipped with special software to post process the aerial photos to produce the mosaic aerial photo map
The process of capturing a well-composed photo is difficult and it takes years of experience to master. We propose a novel pipeline for an autonomous agent to automatically capture an aesthetic photograph by navigating within a local region in a scene. Instead of classical optimization over heuristics such as the rule-of-thirds, we adopt a data-driven aesthetics estimator to assess photo quality. A reinforcement learning framework is used to optimize the model with respect to the learned aesthetics metric. We train our model in simulation with indoor scenes, and we demonstrate that our system can capture aesthetic photos in both simulation and real world environments on a ground robot. To our knowledge, this is the first system that can automatically explore an environment to capture an aesthetic photo with respect to a learned aesthetic estimator.
In this paper we address the issue of photo galleries synchronization, where pictures related to the same event are collected by different users. Existing solutions to address the problem are usually based on unrealistic assumptions, like time consistency across photo galleries, and often heavily rely on heuristics, limiting therefore the applicability to real-world scenarios. We propose a solution that achieves better generalization performance for the synchronization task compared to the available literature. The method is characterized by three stages: at first, deep convolutional neural network features are used to assess the visual similarity among the photos; then, pairs of similar photos are detected across different galleries and used to construct a graph; eventually, a probabilistic graphical model is used to estimate the temporal offset of each pair of galleries, by traversing the minimum spanning tree extracted from this graph. The experimental evaluation is conducted on four publicly available datasets covering different types of events, demonstrating the strength of our proposed method. A thorough discussion of the obtained results is provided for a critical assessment of the quality in synchronization.
Recognizing the identities of people in everyday photos is still a very challenging problem for machine vision, due to non-frontal faces, changes in clothing, location, lighting and similar. Recent studies have shown that rich relational information between people in the same photo can help in recognizing their identities. In this work, we propose to model the relational information between people as a sequence prediction task. At the core of our work is a novel recurrent network architecture, in which relational information between instances' labels and appearance are modeled jointly. In addition to relational cues, scene context is incorporated in our sequence prediction model with no additional cost. In this sense, our approach is a unified framework for modeling both contextual cues and visual appearance of person instances. Our model is trained end-to-end with a sequence of annotated instances in a photo as inputs, and a sequence of corresponding labels as targets. We demonstrate that this simple but elegant formulation achieves state-of-the-art performance on the newly released People In Photo Albums (PIPA) dataset.
Sketch-based image synthesis aims to generate a photo image given a sketch. It is a challenging task; because sketches are drawn by non-professionals and only consist of strokes, they usually exhibit shape deformation and lack visual cues, i.e., colors and textures. Thus translation from sketch to photo involves two aspects: shape and color (texture). Existing methods cannot handle this task well, as they mostly focus on solving one translation. In this work, we show that the key to this task lies in decomposing the translation into two sub-tasks, shape translation and colorization. Correspondingly, we propose a model consisting of two sub-networks, with each one tackling one sub-task. We also find that, when translating shapes, specific drawing styles affect the generated results significantly and may even lead to failure. To make our model more robust to drawing style variations, we design a data augmentation strategy and re-purpose an attention module, aiming to make our model pay less attention to distracted regions of a sketch. Besides, a conditional module is adapted for color translation to improve diversity and increase users' control over the generated results. Both quantitative and qualitative comparisons are presented to show the superiority of our approach. In addition, as a side benefit, our model can synthesize high-quality sketches from photos inversely. We also demonstrate how these generated photos and sketches can benefit other applications, such as sketch-based image retrieval.
There are quite a number of photographs captured under undesirable conditions in the last century. Thus, they are often noisy, regionally incomplete, and grayscale formatted. Conventional approaches mainly focus on one point so that those restoration results are not perceptually sharp or clean enough. To solve these problems, we propose a noise prior learner NEGAN to simulate the noise distribution of real legacy photos using unpaired images. It mainly focuses on matching high-frequency parts of noisy images through discrete wavelet transform (DWT) since they include most of noise statistics. We also create a large legacy photo dataset for learning noise prior. Using learned noise prior, we can easily build valid training pairs by degrading clean images. Then, we propose an IEGAN framework performing image editing including joint denoising, inpainting and colorization based on the estimated noise prior. We evaluate the proposed system and compare it with state-of-the-art image enhancement methods. The experimental results demonstrate that it achieves the best perceptual quality. Please see the webpage \href{https://github.com/zhaoyuzhi/Legacy-Photo-Editing-with-Learned-Noise-Prior}{https://github.com/zhaoyuzhi/Legacy-Photo-Editing-with-Learned-Noise-Prior} for the codes and the proposed LP dataset.
Photo-acid generators (PAGs) are compounds that release acids ($H^+$ ions) when exposed to light. These compounds are critical components of the photolithography processes that are used in the manufacture of semiconductor logic and memory chips. The exponential increase in the demand for semiconductors has highlighted the need for discovering novel photo-acid generators. While de novo molecule design using deep generative models has been widely employed for drug discovery and material design, its application to the creation of novel photo-acid generators poses several unique challenges, such as lack of property labels. In this paper, we highlight these challenges and propose a generative modeling approach that utilizes conditional generation from a pre-trained deep autoencoder and expert-in-the-loop techniques. The validity of the proposed approach was evaluated with the help of subject matter experts, indicating the promise of such an approach for applications beyond the creation of novel photo-acid generators.
Is it possible to build a system to determine the location where a photo was taken using just its pixels? In general, the problem seems exceptionally difficult: it is trivial to construct situations where no location can be inferred. Yet images often contain informative cues such as landmarks, weather patterns, vegetation, road markings, and architectural details, which in combination may allow one to determine an approximate location and occasionally an exact location. Websites such as GeoGuessr and View from your Window suggest that humans are relatively good at integrating these cues to geolocate images, especially en-masse. In computer vision, the photo geolocation problem is usually approached using image retrieval methods. In contrast, we pose the problem as one of classification by subdividing the surface of the earth into thousands of multi-scale geographic cells, and train a deep network using millions of geotagged images. While previous approaches only recognize landmarks or perform approximate matching using global image descriptors, our model is able to use and integrate multiple visible cues. We show that the resulting model, called PlaNet, outperforms previous approaches and even attains superhuman levels of accuracy in some cases. Moreover, we extend our model to photo albums by combining it with a long short-term memory (LSTM) architecture. By learning to exploit temporal coherence to geolocate uncertain photos, we demonstrate that this model achieves a 50% performance improvement over the single-image model.