Abstract:The scarcity of high-quality multimodal biomedical data limits the ability to effectively fine-tune pretrained Large Language Models (LLMs) for specialized biomedical tasks. To address this challenge, we introduce MINT (Multimodal Integrated kNowledge Transfer), a framework that aligns unimodal large decoder models with domain-specific decision patterns from multimodal biomedical data through preference optimization. While MINT supports different optimization techniques, we primarily implement it with the Odds Ratio Preference Optimization (ORPO) framework as its backbone. This strategy enables the aligned LLMs to perform predictive tasks using text-only or image-only inputs while retaining knowledge learnt from multimodal data. MINT leverages an upstream multimodal machine learning (MML) model trained on high-quality multimodal data to transfer domain-specific insights to downstream text-only or image-only LLMs. We demonstrate its effectiveness through two key applications: (1) Rare genetic disease prediction from texts, where MINT uses a multimodal encoder model, trained on facial photos and clinical notes, to generate a preference dataset for aligning a lightweight Llama 3.2-3B-Instruct. Despite relying on text input only, the MINT-derived model outperforms models trained with SFT, RAG, or DPO, and even outperforms Llama 3.1-405B-Instruct. (2) Tissue type classification using cell nucleus images, where MINT uses a vision-language foundation model as the preference generator, containing knowledge learnt from both text and histopathological images to align downstream image-only models. The resulting MINT-derived model significantly improves the performance of Llama 3.2-Vision-11B-Instruct on tissue type classification. In summary, MINT provides an effective strategy to align unimodal LLMs with high-quality multimodal expertise through preference optimization.
Abstract:One of the key technologies for the success of Large Language Models (LLMs) is preference alignment. However, a notable side effect of preference alignment is poor calibration: while the pre-trained models are typically well-calibrated, LLMs tend to become poorly calibrated after alignment with human preferences. In this paper, we investigate why preference alignment affects calibration and how to address this issue. For the first question, we observe that the preference collapse issue in alignment undesirably generalizes to the calibration scenario, causing LLMs to exhibit overconfidence and poor calibration. To address this, we demonstrate the importance of fine-tuning with domain-specific knowledge to alleviate the overconfidence issue. To further analyze whether this affects the model's performance, we categorize models into two regimes: calibratable and non-calibratable, defined by bounds of Expected Calibration Error (ECE). In the calibratable regime, we propose a calibration-aware fine-tuning approach to achieve proper calibration without compromising LLMs' performance. However, as models are further fine-tuned for better performance, they enter the non-calibratable regime. For this case, we develop an EM-algorithm-based ECE regularization for the fine-tuning loss to maintain low calibration error. Extensive experiments validate the effectiveness of the proposed methods.
Abstract:Background: Several studies show that large language models (LLMs) struggle with phenotype-driven gene prioritization for rare diseases. These studies typically use Human Phenotype Ontology (HPO) terms to prompt foundation models like GPT and LLaMA to predict candidate genes. However, in real-world settings, foundation models are not optimized for domain-specific tasks like clinical diagnosis, yet inputs are unstructured clinical notes rather than standardized terms. How LLMs can be instructed to predict candidate genes or disease diagnosis from unstructured clinical notes remains a major challenge. Methods: We introduce RAG-driven CoT and CoT-driven RAG, two methods that combine Chain-of-Thought (CoT) and Retrieval Augmented Generation (RAG) to analyze clinical notes. A five-question CoT protocol mimics expert reasoning, while RAG retrieves data from sources like HPO and OMIM (Online Mendelian Inheritance in Man). We evaluated these approaches on rare disease datasets, including 5,980 Phenopacket-derived notes, 255 literature-based narratives, and 220 in-house clinical notes from Childrens Hospital of Philadelphia. Results: We found that recent foundations models, including Llama 3.3-70B-Instruct and DeepSeek-R1-Distill-Llama-70B, outperformed earlier versions such as Llama 2 and GPT-3.5. We also showed that RAG-driven CoT and CoT-driven RAG both outperform foundation models in candidate gene prioritization from clinical notes; in particular, both methods with DeepSeek backbone resulted in a top-10 gene accuracy of over 40% on Phenopacket-derived clinical notes. RAG-driven CoT works better for high-quality notes, where early retrieval can anchor the subsequent reasoning steps in domain-specific evidence, while CoT-driven RAG has advantage when processing lengthy and noisy notes.