What is music generation? Music generation is the task of generating music or music-like sounds from a model or algorithm.
Papers and Code
Sep 10, 2025
Abstract:Audio and music generation systems have been remarkably developed in the music information retrieval (MIR) research field. The advancement of these technologies raises copyright concerns, as ownership and authorship of AI-generated music (AIGM) remain unclear. Also, it can be difficult to determine whether a piece was generated by AI or composed by humans clearly. To address these challenges, we aim to improve the accuracy of AIGM detection by analyzing the structural patterns of music segments. Specifically, to extract musical features from short audio clips, we integrated various pre-trained models, including self-supervised learning (SSL) models or an audio effect encoder, each within our suggested transformer-based framework. Furthermore, for long audio, we developed a segment transformer that divides music into segments and learns inter-segment relationships. We used the FakeMusicCaps and SONICS datasets, achieving high accuracy in both the short-audio and full-audio detection experiments. These findings suggest that integrating segment-level musical features into long-range temporal analysis can effectively enhance both the performance and robustness of AIGM detection systems.
Via

Sep 10, 2025
Abstract:As a result of continuous advances in Music Information Retrieval (MIR) technology, generating and distributing music has become more diverse and accessible. In this context, interest in music intellectual property protection is increasing to safeguard individual music copyrights. In this work, we propose a system for detecting music plagiarism by combining various MIR technologies. We developed a music segment transcription system that extracts musically meaningful segments from audio recordings to detect plagiarism across different musical formats. With this system, we compute similarity scores based on multiple musical features that can be evaluated through comprehensive musical analysis. Our approach demonstrated promising results in music plagiarism detection experiments, and the proposed method can be applied to real-world music scenarios. We also collected a Similar Music Pair (SMP) dataset for musical similarity research using real-world cases. The dataset are publicly available.
* Accepted in APSIPA 2025 but not published yet(will be published in 2
month..), Arxiv preprint ready for references in future-works
Via

Sep 09, 2025
Abstract:Audio Language Models (ALM) have emerged as the dominant paradigm for speech and music generation by representing audio as sequences of discrete tokens. Yet, unlike text tokens, which are invertible, audio tokens are extracted from lossy codecs with a limited bitrate. As a consequence, increasing audio quality requires generating more tokens, which imposes a trade-off between fidelity and computational cost. We address this issue by studying Continuous Audio Language Models (CALM). These models instantiate a large Transformer backbone that produces a contextual embedding at every timestep. This sequential information then conditions an MLP that generates the next continuous frame of an audio VAE through consistency modeling. By avoiding lossy compression, CALM achieves higher quality at lower computational cost than their discrete counterpart. Experiments on speech and music demonstrate improved efficiency and fidelity over state-of-the-art discrete audio language models, facilitating lightweight, high-quality audio generation. Samples are available at hf.co/spaces/kyutai/calm-samples
* 17 pages, 3 figures
Via

Sep 11, 2025
Abstract:Objective assessment of source-separation systems still mismatches subjective human perception, especially when leakage and self-distortion interact. We introduce the Perceptual Separation (PS) and Perceptual Match (PM), the first pair of measures that functionally isolate these two factors. Our intrusive method begins with generating a bank of fundamental distortions for each reference waveform signal in the mixture. Distortions, references, and their respective system outputs from all sources are then independently encoded by a pre-trained self-supervised learning model. These representations are aggregated and projected onto a manifold via diffusion maps, which aligns Euclidean distances on the manifold with dissimilarities of the encoded waveforms. On this manifold, the PM measures the Mahalanobis distance from each output to its attributed cluster that consists of its reference and distortions embeddings, capturing self-distortion. The PS accounts for the Mahalanobis distance of the output to the attributed and to the closest non-attributed clusters, quantifying leakage. Both measures are differentiable and granular, operating at a resolution as low as 50 frames per second. We further derive, for both measures, deterministic error radius and non-asymptotic, high-probability confidence intervals (CIs). Experiments on English, Spanish, and music mixtures show that the PS and PM nearly always achieve the highest linear correlation coefficients with human mean-opinion scores than 14 competitors, reaching as high as 86.36% for speech and 87.21% for music. We observe, at worst, an error radius of 1.39% and a probabilistic 95% CI of 12.21% for these coefficients, which improves reliable and informed evaluation. Using mutual information, the measures complement each other most as their values decrease, suggesting they are jointly more informative as system performance degrades.
* Submitted to ICLR
Via

Sep 05, 2025
Abstract:Recent advances in Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities across various vision-language tasks. However, their reasoning abilities in the multimodal symbolic music domain remain largely unexplored. We introduce WildScore, the first in-the-wild multimodal symbolic music reasoning and analysis benchmark, designed to evaluate MLLMs' capacity to interpret real-world music scores and answer complex musicological queries. Each instance in WildScore is sourced from genuine musical compositions and accompanied by authentic user-generated questions and discussions, capturing the intricacies of practical music analysis. To facilitate systematic evaluation, we propose a systematic taxonomy, comprising both high-level and fine-grained musicological ontologies. Furthermore, we frame complex music reasoning as multiple-choice question answering, enabling controlled and scalable assessment of MLLMs' symbolic music understanding. Empirical benchmarking of state-of-the-art MLLMs on WildScore reveals intriguing patterns in their visual-symbolic reasoning, uncovering both promising directions and persistent challenges for MLLMs in symbolic music reasoning and analysis. We release the dataset and code.
Via

Sep 04, 2025
Abstract:Enhancing the ability of Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) to interpret sheet music is a crucial step toward building AI musicians. However, current research lacks both evaluation benchmarks and training data for sheet music reasoning. To address this, we propose the idea of synthesizing sheet music problems grounded in music theory, which can serve both as evaluation benchmarks and as training data for reinforcement learning with verifiable rewards (RLVR). We introduce a data synthesis framework that generates verifiable sheet music questions in both textual and visual modalities, leading to the Synthetic Sheet Music Reasoning Benchmark (SSMR-Bench) and a complementary training set. Evaluation results on SSMR-Bench show the importance of models' reasoning abilities in interpreting sheet music. At the same time, the poor performance of Gemini 2.5-Pro highlights the challenges that MLLMs still face in interpreting sheet music in a visual format. By leveraging synthetic data for RLVR, Qwen3-8B-Base and Qwen2.5-VL-Instruct achieve improvements on the SSMR-Bench. Besides, the trained Qwen3-8B-Base surpasses GPT-4 in overall performance on MusicTheoryBench and achieves reasoning performance comparable to GPT-4 with the strategies of Role play and Chain-of-Thought. Notably, its performance on math problems also improves relative to the original Qwen3-8B-Base. Furthermore, our results show that the enhanced reasoning ability can also facilitate music composition. In conclusion, we are the first to propose the idea of synthesizing sheet music problems based on music theory rules, and demonstrate its effectiveness not only in advancing model reasoning for sheet music understanding but also in unlocking new possibilities for AI-assisted music creation.
* 11 pages
Via

Sep 04, 2025
Abstract:Human motion video generation has garnered significant research interest due to its broad applications, enabling innovations such as photorealistic singing heads or dynamic avatars that seamlessly dance to music. However, existing surveys in this field focus on individual methods, lacking a comprehensive overview of the entire generative process. This paper addresses this gap by providing an in-depth survey of human motion video generation, encompassing over ten sub-tasks, and detailing the five key phases of the generation process: input, motion planning, motion video generation, refinement, and output. Notably, this is the first survey that discusses the potential of large language models in enhancing human motion video generation. Our survey reviews the latest developments and technological trends in human motion video generation across three primary modalities: vision, text, and audio. By covering over two hundred papers, we offer a thorough overview of the field and highlight milestone works that have driven significant technological breakthroughs. Our goal for this survey is to unveil the prospects of human motion video generation and serve as a valuable resource for advancing the comprehensive applications of digital humans. A complete list of the models examined in this survey is available in Our Repository https://github.com/Winn1y/Awesome-Human-Motion-Video-Generation.
* IEEE Transactions on Pattern Analysis and Machine Intelligence
2025
* Accepted by TPAMI. Github Repo:
https://github.com/Winn1y/Awesome-Human-Motion-Video-Generation IEEE Access:
https://ieeexplore.ieee.org/document/11106267
Via

Sep 05, 2025
Abstract:Music adversarial attacks have garnered significant interest in the field of Music Information Retrieval (MIR). In this paper, we present Music Adversarial Inpainting Attack (MAIA), a novel adversarial attack framework that supports both white-box and black-box attack scenarios. MAIA begins with an importance analysis to identify critical audio segments, which are then targeted for modification. Utilizing generative inpainting models, these segments are reconstructed with guidance from the output of the attacked model, ensuring subtle and effective adversarial perturbations. We evaluate MAIA on multiple MIR tasks, demonstrating high attack success rates in both white-box and black-box settings while maintaining minimal perceptual distortion. Additionally, subjective listening tests confirm the high audio fidelity of the adversarial samples. Our findings highlight vulnerabilities in current MIR systems and emphasize the need for more robust and secure models.
* Accepted at ISMIR2025
Via

Sep 05, 2025
Abstract:This paper investigates GrooveTransformer, a real-time rhythm generation system, through the postphenomenological framework of Variational Cross-Examination (VCE). By reflecting on its deployment across three distinct artistic contexts, we identify three stabilities: an autonomous drum accompaniment generator, a rhythmic control voltage sequencer in Eurorack format, and a rhythm driver for a harmonic accompaniment system. The versatility of its applications was not an explicit goal from the outset of the project. Thus, we ask: how did this multistability emerge? Through VCE, we identify three key contributors to its emergence: the affordances of system invariants, the interdisciplinary collaboration, and the situated nature of its development. We conclude by reflecting on the viability of VCE as a descriptive and analytical method for Digital Musical Instrument (DMI) design, emphasizing its value in uncovering how technologies mediate, co-shape, and are co-shaped by users and contexts.
* AI Music Creativity 2025
Via

Sep 03, 2025
Abstract:We present a system for automatic multi-axis perceptual quality prediction of generative audio, developed for Track 2 of the AudioMOS Challenge 2025. The task is to predict four Audio Aesthetic Scores--Production Quality, Production Complexity, Content Enjoyment, and Content Usefulness--for audio generated by text-to-speech (TTS), text-to-audio (TTA), and text-to-music (TTM) systems. A main challenge is the domain shift between natural training data and synthetic evaluation data. To address this, we combine BEATs, a pretrained transformer-based audio representation model, with a multi-branch long short-term memory (LSTM) predictor and use a triplet loss with buffer-based sampling to structure the embedding space by perceptual similarity. Our results show that this improves embedding discriminability and generalization, enabling domain-robust audio quality assessment without synthetic training data.
* Accepted by IEEE Automatic Speech Recognition and Understanding
Workshop(ASRU), 2025
Via
