Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"music generation": models, code, and papers

Video Background Music Generation with Controllable Music Transformer

Nov 16, 2021
Shangzhe Di, Zeren Jiang, Si Liu, Zhaokai Wang, Leyan Zhu, Zexin He, Hongming Liu, Shuicheng Yan

In this work, we address the task of video background music generation. Some previous works achieve effective music generation but are unable to generate melodious music tailored to a particular video, and none of them considers the video-music rhythmic consistency. To generate the background music that matches the given video, we first establish the rhythmic relations between video and background music. In particular, we connect timing, motion speed, and motion saliency from video with beat, simu-note density, and simu-note strength from music, respectively. We then propose CMT, a Controllable Music Transformer that enables local control of the aforementioned rhythmic features and global control of the music genre and instruments. Objective and subjective evaluations show that the generated background music has achieved satisfactory compatibility with the input videos, and at the same time, impressive music quality. Code and models are available at https://github.com/wzk1015/video-bgm-generation.

* Accepted to ACM Multimedia 2021. Project website at https://wzk1015.github.io/cmt/ 
  

MuseGAN: Multi-track Sequential Generative Adversarial Networks for Symbolic Music Generation and Accompaniment

Nov 24, 2017
Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, Yi-Hsuan Yang

Generating music has a few notable differences from generating images and videos. First, music is an art of time, necessitating a temporal model. Second, music is usually composed of multiple instruments/tracks with their own temporal dynamics, but collectively they unfold over time interdependently. Lastly, musical notes are often grouped into chords, arpeggios or melodies in polyphonic music, and thereby introducing a chronological ordering of notes is not naturally suitable. In this paper, we propose three models for symbolic multi-track music generation under the framework of generative adversarial networks (GANs). The three models, which differ in the underlying assumptions and accordingly the network architectures, are referred to as the jamming model, the composer model and the hybrid model. We trained the proposed models on a dataset of over one hundred thousand bars of rock music and applied them to generate piano-rolls of five tracks: bass, drums, guitar, piano and strings. A few intra-track and inter-track objective metrics are also proposed to evaluate the generative results, in addition to a subjective user study. We show that our models can generate coherent music of four bars right from scratch (i.e. without human inputs). We also extend our models to human-AI cooperative music generation: given a specific track composed by human, we can generate four additional tracks to accompany it. All code, the dataset and the rendered audio samples are available at https://salu133445.github.io/musegan/ .

* to appear at AAAI 2018 
  

Evaluating Deep Music Generation Methods Using Data Augmentation

Dec 31, 2021
Toby Godwin, Georgios Rizos, Alice Baird, Najla D. Al Futaisi, Vincent Brisse, Bjoern W. Schuller

Despite advances in deep algorithmic music generation, evaluation of generated samples often relies on human evaluation, which is subjective and costly. We focus on designing a homogeneous, objective framework for evaluating samples of algorithmically generated music. Any engineered measures to evaluate generated music typically attempt to define the samples' musicality, but do not capture qualities of music such as theme or mood. We do not seek to assess the musical merit of generated music, but instead explore whether generated samples contain meaningful information pertaining to emotion or mood/theme. We achieve this by measuring the change in predictive performance of a music mood/theme classifier after augmenting its training data with generated samples. We analyse music samples generated by three models -- SampleRNN, Jukebox, and DDSP -- and employ a homogeneous framework across all methods to allow for objective comparison. This is the first attempt at augmenting a music genre classification dataset with conditionally generated music. We investigate the classification performance improvement using deep music generation and the ability of the generators to make emotional music by using an additional, emotion annotation of the dataset. Finally, we use a classifier trained on real data to evaluate the label validity of class-conditionally generated samples.

* 2021 IEEE 23rd International Workshop on Multimedia Signal Processing (MMSP) 
  

JamBot: Music Theory Aware Chord Based Generation of Polyphonic Music with LSTMs

Nov 21, 2017
Gino Brunner, Yuyi Wang, Roger Wattenhofer, Jonas Wiesendanger

We propose a novel approach for the generation of polyphonic music based on LSTMs. We generate music in two steps. First, a chord LSTM predicts a chord progression based on a chord embedding. A second LSTM then generates polyphonic music from the predicted chord progression. The generated music sounds pleasing and harmonic, with only few dissonant notes. It has clear long-term structure that is similar to what a musician would play during a jam session. We show that our approach is sensible from a music theory perspective by evaluating the learned chord embeddings. Surprisingly, our simple model managed to extract the circle of fifths, an important tool in music theory, from the dataset.

* Paper presented at the 29th International Conference on Tools with Artificial Intelligence, ICTAI 2017, Boston, MA, USA 
  

Melody Structure Transfer Network: Generating Music with Separable Self-Attention

Jul 21, 2021
Ning Zhang, Junchi Yan

Symbolic music generation has attracted increasing attention, while most methods focus on generating short piece (mostly less than 8 bars, and up to 32 bars). Generating long music calls for effective expression of the coherent music structure. Despite their success on long sequences, self-attention architectures still have challenge in dealing with long-term music as it requires additional care on the subtle music structure. In this paper, we propose to transfer the structure of training samples for new music generation, and develop a novel separable self-attention based model which enable the learning and transferring of the structure embedding. We show that our transfer model can generate music sequences (up to 100 bars) with interpretable structures, which bears similar structures and composition techniques with the template music from training set. Extensive experiments show its ability of generating music with target structure and well diversity. The generated 3,000 sets of music is uploaded as supplemental material.

  

Foley Music: Learning to Generate Music from Videos

Jul 21, 2020
Chuang Gan, Deng Huang, Peihao Chen, Joshua B. Tenenbaum, Antonio Torralba

In this paper, we introduce Foley Music, a system that can synthesize plausible music for a silent video clip about people playing musical instruments. We first identify two key intermediate representations for a successful video to music generator: body keypoints from videos and MIDI events from audio recordings. We then formulate music generation from videos as a motion-to-MIDI translation problem. We present a Graph$-$Transformer framework that can accurately predict MIDI event sequences in accordance with the body movements. The MIDI event can then be converted to realistic music using an off-the-shelf music synthesizer tool. We demonstrate the effectiveness of our models on videos containing a variety of music performances. Experimental results show that our model outperforms several existing systems in generating music that is pleasant to listen to. More importantly, the MIDI representations are fully interpretable and transparent, thus enabling us to perform music editing flexibly. We encourage the readers to watch the demo video with audio turned on to experience the results.

* ECCV 2020. Project page: http://foley-music.csail.mit.edu 
  

MIDI-Sandwich2: RNN-based Hierarchical Multi-modal Fusion Generation VAE networks for multi-track symbolic music generation

Sep 08, 2019
Xia Liang, Junmin Wu, Jing Cao

Currently, almost all the multi-track music generation models use the Convolutional Neural Network (CNN) to build the generative model, while the Recurrent Neural Network (RNN) based models can not be applied in this task. In view of the above problem, this paper proposes a RNN-based Hierarchical Multi-modal Fusion Generation Variational Autoencoder (VAE) network, MIDI-Sandwich2, for multi-track symbolic music generation. Inspired by VQ-VAE2, MIDI-Sandwich2 expands the dimension of the original hierarchical model by using multiple independent Binary Variational Autoencoder (BVAE) models without sharing weights to process the information of each track. Then, with multi-modal fusion technology, the upper layer named Multi-modal Fusion Generation VAE (MFG-VAE) combines the latent space vectors generated by the respective tracks, and uses the decoder to perform the ascending dimension reconstruction to simulate the inverse operation of multi-modal fusion, multi-modal generation, so as to realize the RNN-based multi-track symbolic music generation. For the multi-track format pianoroll, we also improve the output binarization method of MuseGAN, which solves the problem that the refinement step of the original scheme is difficult to differentiate and the gradient is hard to descent, making the generated song more expressive. The model is validated on the Lakh Pianoroll Dataset (LPD) multi-track dataset. Compared to the MuseGAN, MIDI-Sandwich2 can not only generate harmonious multi-track music, the generation quality is also close to the state of the art level. At the same time, by using the VAE to restore songs, the semi-generated songs reproduced by the MIDI-Sandwich2 are more beautiful than the pure autogeneration music generated by MuseGAN. Both the code and the audition audio samples are open source on https://github.com/LiangHsia/MIDI-S2.

  

A Comprehensive Survey on Deep Music Generation: Multi-level Representations, Algorithms, Evaluations, and Future Directions

Nov 13, 2020
Shulei Ji, Jing Luo, Xinyu Yang

The utilization of deep learning techniques in generating various contents (such as image, text, etc.) has become a trend. Especially music, the topic of this paper, has attracted widespread attention of countless researchers.The whole process of producing music can be divided into three stages, corresponding to the three levels of music generation: score generation produces scores, performance generation adds performance characteristics to the scores, and audio generation converts scores with performance characteristics into audio by assigning timbre or generates music in audio format directly. Previous surveys have explored the network models employed in the field of automatic music generation. However, the development history, the model evolution, as well as the pros and cons of same music generation task have not been clearly illustrated. This paper attempts to provide an overview of various composition tasks under different music generation levels, covering most of the currently popular music generation tasks using deep learning. In addition, we summarize the datasets suitable for diverse tasks, discuss the music representations, the evaluation methods as well as the challenges under different levels, and finally point out several future directions.

* 96 pages,this is a draft 
  

Using a Bi-directional LSTM Model with Attention Mechanism trained on MIDI Data for Generating Unique Music

Nov 02, 2020
Ashish Ranjan, Varun Nagesh Jolly Behera, Motahar Reza

Generating music is an interesting and challenging problem in the field of machine learning. Mimicking human creativity has been popular in recent years, especially in the field of computer vision and image processing. With the advent of GANs, it is possible to generate new similar images, based on trained data. But this cannot be done for music similarly, as music has an extra temporal dimension. So it is necessary to understand how music is represented in digital form. When building models that perform this generative task, the learning and generation part is done in some high-level representation such as MIDI (Musical Instrument Digital Interface) or scores. This paper proposes a bi-directional LSTM (Long short-term memory) model with attention mechanism capable of generating similar type of music based on MIDI data. The music generated by the model follows the theme/style of the music the model is trained on. Also, due to the nature of MIDI, the tempo, instrument, and other parameters can be defined, and changed, post generation.

  

Controllable deep melody generation via hierarchical music structure representation

Sep 02, 2021
Shuqi Dai, Zeyu Jin, Celso Gomes, Roger B. Dannenberg

Recent advances in deep learning have expanded possibilities to generate music, but generating a customizable full piece of music with consistent long-term structure remains a challenge. This paper introduces MusicFrameworks, a hierarchical music structure representation and a multi-step generative process to create a full-length melody guided by long-term repetitive structure, chord, melodic contour, and rhythm constraints. We first organize the full melody with section and phrase-level structure. To generate melody in each phrase, we generate rhythm and basic melody using two separate transformer-based networks, and then generate the melody conditioned on the basic melody, rhythm and chords in an auto-regressive manner. By factoring music generation into sub-problems, our approach allows simpler models and requires less data. To customize or add variety, one can alter chords, basic melody, and rhythm structure in the music frameworks, letting our networks generate the melody accordingly. Additionally, we introduce new features to encode musical positional information, rhythm patterns, and melodic contours based on musical domain knowledge. A listening test reveals that melodies generated by our method are rated as good as or better than human-composed music in the POP909 dataset about half the time.

* 6 pages, 9 figures, in Proc. of the 22nd Int. Society for Music Information Retrieval Conf.,Online, 2021 
  
1
2
3
4
5
6
7
>>