Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"chatbots": models, code, and papers

Utterance-to-Utterance Interactive Matching Network for Multi-Turn Response Selection in Retrieval-Based Chatbots

Nov 16, 2019
Jia-Chen Gu, Zhen-Hua Ling, Quan Liu

This paper proposes an utterance-to-utterance interactive matching network (U2U-IMN) for multi-turn response selection in retrieval-based chatbots. Different from previous methods following context-to-response matching or utterance-to-response matching frameworks, this model treats both contexts and responses as sequences of utterances when calculating the matching degrees between them. For a context-response pair, the U2U-IMN model first encodes each utterance separately using recurrent and self-attention layers. Then, a global and bidirectional interaction between the context and the response is conducted using the attention mechanism to collect the matching information between them. The distances between context and response utterances are employed as a prior component when calculating the attention weights. Finally, sentence-level aggregation and context-response-level aggregation are executed in turn to obtain the feature vector for matching degree prediction. Experiments on four public datasets showed that our proposed method outperformed baseline methods on all metrics, achieving a new state-of-the-art performance and demonstrating compatibility across domains for multi-turn response selection.

* Accepted by IEEE/ACM Transactions on Audio, Speech and Language Processing. arXiv admin note: substantial text overlap with arXiv:1901.01824 
Access Paper or Ask Questions

Partner Matters! An Empirical Study on Fusing Personas for Personalized Response Selection in Retrieval-Based Chatbots

May 21, 2021
Jia-Chen Gu, Hui Liu, Zhen-Hua Ling, Quan Liu, Zhigang Chen, Xiaodan Zhu

Persona can function as the prior knowledge for maintaining the consistency of dialogue systems. Most of previous studies adopted the self persona in dialogue whose response was about to be selected from a set of candidates or directly generated, but few have noticed the role of partner in dialogue. This paper makes an attempt to thoroughly explore the impact of utilizing personas that describe either self or partner speakers on the task of response selection in retrieval-based chatbots. Four persona fusion strategies are designed, which assume personas interact with contexts or responses in different ways. These strategies are implemented into three representative models for response selection, which are based on the Hierarchical Recurrent Encoder (HRE), Interactive Matching Network (IMN) and Bidirectional Encoder Representations from Transformers (BERT) respectively. Empirical studies on the Persona-Chat dataset show that the partner personas neglected in previous studies can improve the accuracy of response selection in the IMN- and BERT-based models. Besides, our BERT-based model implemented with the context-response-aware persona fusion strategy outperforms previous methods by margins larger than 2.7% on original personas and 4.6% on revised personas in terms of [email protected] (top-1 accuracy), achieving a new state-of-the-art performance on the Persona-Chat dataset.

* Accepted by SIGIR 2021 
Access Paper or Ask Questions

Proposal Towards a Personalized Knowledge-powered Self-play Based Ensemble Dialog System

Sep 11, 2019
Richard Csaky

This is the application document for the 2019 Amazon Alexa competition. We give an overall vision of our conversational experience, as well as a sample conversation that we would like our dialog system to achieve by the end of the competition. We believe personalization, knowledge, and self-play are important components towards better chatbots. These are further highlighted by our detailed system architecture proposal and novelty section. Finally, we describe how we would ensure an engaging experience, how this research would impact the field, and related work.

* 14 pages. Originally written for the 2019 Amazon Alexa application 
Access Paper or Ask Questions

Back to the Future for Dialogue Research: A Position Paper

Dec 04, 2018
Philip R Cohen

This short position paper is intended to provide a critique of current approaches to dialogue, as well as a roadmap for collaborative dialogue research. It is unapologetically opinionated, but informed by 40 years of dialogue re-search. No attempt is made to be comprehensive. The paper will discuss current research into building so-called "chatbots", slot-filling dialogue systems, and plan-based dialogue systems. For further discussion of some of these issues, please see (Allen et al., in press).

* AAAI Workshop 2019, Deep Dial 
Access Paper or Ask Questions

Neural Approaches to Conversational AI

Sep 21, 2018
Jianfeng Gao, Michel Galley, Lihong Li

The present paper surveys neural approaches to conversational AI that have been developed in the last few years. We group conversational systems into three categories: (1) question answering agents, (2) task-oriented dialogue agents, and (3) chatbots. For each category, we present a review of state-of-the-art neural approaches, draw the connection between them and traditional approaches, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies.

* Submitted to Foundations and Trends in Information Retrieval (85 pages) 
Access Paper or Ask Questions

Toward Best Practices for Explainable B2B Machine Learning

Jun 11, 2019
Kit Kuksenok

To design tools and data pipelines for explainable B2B machine learning (ML) systems, we need to recognize not only the immediate audience of such tools and data, but also (1) their organizational context and (2) secondary audiences. Our learnings are based on building custom ML-based chatbots for recruitment. We believe that in the B2B context, "explainable" ML means not only a system that can "explain itself" through tools and data pipelines, but also enables its domain-expert users to explain it to other stakeholders.

* 4 pages, 1 figure; position paper for INTERACT 2019 workshop on Humans in the Loop: Bridging AI and HCI 
Access Paper or Ask Questions

An In-depth Walkthrough on Evolution of Neural Machine Translation

Apr 10, 2020
Rohan Jagtap, Dr. Sudhir N. Dhage

Neural Machine Translation (NMT) methodologies have burgeoned from using simple feed-forward architectures to the state of the art; viz. BERT model. The use cases of NMT models have been broadened from just language translations to conversational agents (chatbots), abstractive text summarization, image captioning, etc. which have proved to be a gem in their respective applications. This paper aims to study the major trends in Neural Machine Translation, the state of the art models in the domain and a high level comparison between them.

* 10 pages, 10 figures 
Access Paper or Ask Questions

The Second Conversational Intelligence Challenge (ConvAI2)

Jan 31, 2019
Emily Dinan, Varvara Logacheva, Valentin Malykh, Alexander Miller, Kurt Shuster, Jack Urbanek, Douwe Kiela, Arthur Szlam, Iulian Serban, Ryan Lowe, Shrimai Prabhumoye, Alan W Black, Alexander Rudnicky, Jason Williams, Joelle Pineau, Mikhail Burtsev, Jason Weston

We describe the setting and results of the ConvAI2 NeurIPS competition that aims to further the state-of-the-art in open-domain chatbots. Some key takeaways from the competition are: (i) pretrained Transformer variants are currently the best performing models on this task, (ii) but to improve performance on multi-turn conversations with humans, future systems must go beyond single word metrics like perplexity to measure the performance across sequences of utterances (conversations) -- in terms of repetition, consistency and balance of dialogue acts (e.g. how many questions asked vs. answered).

Access Paper or Ask Questions

A New Framework for Machine Intelligence: Concepts and Prototype

Jun 06, 2018
Abel Torres Montoya

Machine learning (ML) and artificial intelligence (AI) have become hot topics in many information processing areas, from chatbots to scientific data analysis. At the same time, there is uncertainty about the possibility of extending predominant ML technologies to become general solutions with continuous learning capabilities. Here, a simple, yet comprehensive, theoretical framework for intelligent systems is presented. A combination of Mirror Compositional Representations (MCR) and a Solution-Critic Loop (SCL) is proposed as a generic approach for different types of problems. A prototype implementation is presented for document comparison using English Wikipedia corpus.

Access Paper or Ask Questions