Virginia Tech
Abstract:Traditional 3D modeling requires technical expertise, specialized software, and time-intensive processes, making it inaccessible for many users. Our research aims to lower these barriers by combining generative AI and augmented reality (AR) into a cohesive system that allows users to easily generate, manipulate, and interact with 3D models in real time, directly within AR environments. Utilizing cutting-edge AI models like Shap-E, we address the complex challenges of transforming 2D images into 3D representations in AR environments. Key challenges such as object isolation, handling intricate backgrounds, and achieving seamless user interaction are tackled through advanced object detection methods, such as Mask R-CNN. Evaluation results from 35 participants reveal an overall System Usability Scale (SUS) score of 69.64, with participants who engaged with AR/VR technologies more frequently rating the system significantly higher, at 80.71. This research is particularly relevant for applications in gaming, education, and AR-based e-commerce, offering intuitive, model creation for users without specialized skills.
Abstract:We use a duoethnographic approach to study how wearable-integrated LLM chatbots can assist with personalized stress management, addressing the growing need for immediacy and tailored interventions. Two researchers interacted with custom chatbots over 22 days, responding to wearable-detected physiological prompts, recording stressor phrases, and using them to seek tailored interventions from their LLM-powered chatbots. They recorded their experiences in autoethnographic diaries and analyzed them during weekly discussions, focusing on the relevance, clarity, and impact of chatbot-generated interventions. Results showed that even though most events triggered by the wearable were meaningful, only one in five warranted an intervention. It also showed that interventions tailored with brief event descriptions were more effective than generic ones. By examining the intersection of wearables and LLM, this research contributes to developing more effective, user-centric mental health tools for real-time stress relief and behavior change.