Autonomous cars are self-driving vehicles that use artificial intelligence (AI) and sensors to navigate and operate without human intervention, using high-resolution cameras and lidars that detect what happens in the car's immediate surroundings. They have the potential to revolutionize transportation by improving safety, efficiency, and accessibility.
Deploying pretrained policies in real-world applications presents substantial challenges that fundamentally limit the practical applicability of learning-based control systems. When autonomous systems encounter environmental changes in system dynamics, sensor drift, or task objectives, fixed policies rapidly degrade in performance. We show that employing Real-Time Recurrent Reinforcement Learning (RTRRL), a biologically plausible algorithm for online adaptation, can effectively fine-tune a pretrained policy to improve autonomous agents' performance on driving tasks. We further show that RTRRL synergizes with a recent biologically inspired recurrent network model, the Liquid-Resistance Liquid-Capacitance RNN. We demonstrate the effectiveness of this closed-loop approach in a simulated CarRacing environment and in a real-world line-following task with a RoboRacer car equipped with an event camera.
Autonomous agent systems increasingly trigger real-world side effects: deploying infrastructure, modifying databases, moving money, and executing workflows. Yet most agent stacks provide no mandatory execution checkpoint where organizations can deterministically permit, deny, or defer an action before it changes reality. This paper introduces Faramesh, a protocol-agnostic execution control plane that enforces execution-time authorization for agent-driven actions via a non-bypassable Action Authorization Boundary (AAB). Faramesh canonicalizes agent intent into a Canonical Action Representation (CAR), evaluates actions deterministically against policy and state, and issues a decision artifact (PERMIT/DEFER/DENY) that executors must validate prior to execution. The system is designed to be framework- and model-agnostic, supports multi-agent and multi-tenant deployments, and remains independent of transport protocols (e.g., MCP). Faramesh further provides decision-centric, append-only provenance logging keyed by canonical action hashes, enabling auditability, verification, and deterministic replay without re-running agent reasoning. We show how these primitives yield enforceable, predictable governance for autonomous execution while avoiding hidden coupling to orchestration layers or observability-only approaches.
Autonomous agents such as cars, robots and drones need to precisely localize themselves in diverse environments, including in GPS-denied indoor environments. One approach for precise localization is visual place recognition (VPR), which estimates the place of an image based on previously seen places. State-of-the-art VPR models require high amounts of memory, making them unwieldy for mobile deployment, while more compact models lack robustness and generalization capabilities. This work overcomes these limitations for robotics using a combination of event-based vision sensors and an event-based novel guided variational autoencoder (VAE). The encoder part of our model is based on a spiking neural network model which is compatible with power-efficient low latency neuromorphic hardware. The VAE successfully disentangles the visual features of 16 distinct places in our new indoor VPR dataset with a classification performance comparable to other state-of-the-art approaches while, showing robust performance also under various illumination conditions. When tested with novel visual inputs from unknown scenes, our model can distinguish between these places, which demonstrates a high generalization capability by learning the essential features of location. Our compact and robust guided VAE with generalization capabilities poses a promising model for visual place recognition that can significantly enhance mobile robot navigation in known and unknown indoor environments.
Human centric critical systems are increasingly involving artificial intelligence to enable knowledge extraction from sensor collected data. Examples include medical monitoring and control systems, gesture based human computer interaction systems, and autonomous cars. Such systems are intended to operate for a long term potentially for a lifetime in many scenarios such as closed loop blood glucose control for Type 1 diabetics, self-driving cars, and monitoting systems for stroke diagnosis, and rehabilitation. Long term operation of such AI enabled human centric applications can expose them to corner cases for which their operation is may be uncertain. This can be due to many reasons such as inherent flaws in the design, limited resources for testing, inherent computational limitations of the testing methodology, or unknown use cases resulting from human interaction with the system. Such untested corner cases or cases for which the system performance is uncertain can lead to violations in the safety, sustainability, and security requirements of the system. In this paper, we analyze the existing techniques for safety, sustainability, and security analysis of an AI enabled human centric control system and discuss their limitations for testing the system for long term use in practice. We then propose personalized model based solutions for potentially eliminating such limitations.
In recent years, Human-centric cyber-physical systems have increasingly involved artificial intelligence to enable knowledge extraction from sensor-collected data. Examples include medical monitoring and control systems, as well as autonomous cars. Such systems are intended to operate according to the protocols and guidelines for regular system operations. However, in many scenarios, such as closed-loop blood glucose control for Type 1 diabetics, self-driving cars, and monitoring systems for stroke diagnosis. The operations of such AI-enabled human-centric applications can expose them to cases for which their operational mode may be uncertain, for instance, resulting from the interactions with a human with the system. Such cases, in which the system is in uncertain conditions, can violate the system's safety and security requirements. This paper will discuss operational deviations that can lead these systems to operate in unknown conditions. We will then create a framework to evaluate different strategies for ensuring the safety and security of AI-enabled human-centric cyber-physical systems in operation deployment. Then, as an example, we show a personalized image-based novel technique for detecting the non-announcement of meals in closed-loop blood glucose control for Type 1 diabetics.
Recent advances in end-to-end autonomous driving show that policies trained on patch-aligned features extracted from foundation models generalize better to Out-of-Distribution (OOD). We hypothesize that due to the self-attention mechanism, each patch feature implicitly embeds/contains information from all other patches, represented in a different way and intensity, making these descriptors highly redundant. We quantify redundancy in such (BLIP2) features via PCA and cross-patch similarity: $90$% of variance is captured by $17/64$ principal components, and strong inter-token correlations are pervasive. Training on such overlapping information leads the policy to overfit spurious correlations, hurting OOD robustness. We present Stochastic-Patch-Selection (SPS), a simple yet effective approach for learning policies that are more robust, generalizable, and efficient. For every frame, SPS randomly masks a fraction of patch descriptors, not feeding them to the policy model, while preserving the spatial layout of the remaining patches. Thus, the policy is provided with different stochastic but complete views of the (same) scene: every random subset of patches acts like a different, yet still sensible, coherent projection of the world. The policy thus bases its decisions on features that are invariant to which specific tokens survive. Extensive experiments confirm that across all OOD scenarios, our method outperforms the state of the art (SOTA), achieving a $6.2$% average improvement and up to $20.4$% in closed-loop simulations, while being $2.4\times$ faster. We conduct ablations over masking rates and patch-feature reorganization, training and evaluating 9 systems, with 8 of them surpassing prior SOTA. Finally, we show that the same learned policy transfers to a physical, real-world car without any tuning.
Autonomous Vehicle (AV) technology has been heavily researched and sought after, yet there are no SAE Level 5 AVs available today in the marketplace. We contend that over-reliance on machine learning technology is the main reason. Use of automated commonsense reasoning technology, we believe, can help achieve SAE Level 5 autonomy. In this paper, we show how automated common- sense reasoning technology can be deployed in situations where there are not enough data samples available to train a deep learning-based AV model that can handle certain abnormal road scenarios. Specifically, we consider two situations where (i) a traffic signal is malfunctioning at an intersection and (ii) all the cars ahead are slowing down and steering away due to an unexpected obstruction (e.g., animals on the road). We show that in such situations, our commonsense reasoning-based solution accurately detects traffic light colors and obstacles not correctly captured by the AV's perception model. We also provide a pathway for efficiently invoking commonsense reasoning by measuring uncertainty in the computer vision model and using commonsense reasoning to handle uncertain sce- narios. We describe our experiments conducted using the CARLA simulator and the results obtained. The main contribution of our research is to show that automated commonsense reasoning effectively corrects AV-based object detection misclassifications and that hybrid models provide an effective pathway to improving AV perception.




Recent years have witnessed significant progress in the development of machine learning models across a wide range of fields, fueled by increased computational resources, large-scale datasets, and the rise of deep learning architectures. From malware detection to enabling autonomous navigation, modern machine learning systems have demonstrated remarkable capabilities. However, as these models are deployed in ever-changing real-world scenarios, their ability to remain reliable and adaptive over time becomes increasingly important. For example, in the real world, new malware families are continuously developed, whereas autonomous driving cars are employed in many different cities and weather conditions. Models trained in fixed settings can not respond effectively to novel conditions encountered post-deployment. In fact, most machine learning models are still developed under the assumption that training and test data are independent and identically distributed (i.i.d.), i.e., sampled from the same underlying (unknown) distribution. While this assumption simplifies model development and evaluation, it does not hold in many real-world applications, where data changes over time and unexpected inputs frequently occur. Retraining models from scratch whenever new data appears is computationally expensive, time-consuming, and impractical in resource-constrained environments. These limitations underscore the need for Continual Learning (CL), which enables models to incrementally learn from evolving data streams without forgetting past knowledge, and Out-of-Distribution (OOD) detection, which allows systems to identify and respond to novel or anomalous inputs. Jointly addressing both challenges is critical to developing robust, efficient, and adaptive AI systems.
Traditional workflow-based agents exhibit limited intelligence when addressing real-world problems requiring tool invocation. Tool-integrated reasoning (TIR) agents capable of autonomous reasoning and tool invocation are rapidly emerging as a powerful approach for complex decision-making tasks involving multi-step interactions with external environments. In this work, we introduce MindWatcher, a TIR agent integrating interleaved thinking and multimodal chain-of-thought (CoT) reasoning. MindWatcher can autonomously decide whether and how to invoke diverse tools and coordinate their use, without relying on human prompts or workflows. The interleaved thinking paradigm enables the model to switch between thinking and tool calling at any intermediate stage, while its multimodal CoT capability allows manipulation of images during reasoning to yield more precise search results. We implement automated data auditing and evaluation pipelines, complemented by manually curated high-quality datasets for training, and we construct a benchmark, called MindWatcher-Evaluate Bench (MWE-Bench), to evaluate its performance. MindWatcher is equipped with a comprehensive suite of auxiliary reasoning tools, enabling it to address broad-domain multimodal problems. A large-scale, high-quality local image retrieval database, covering eight categories including cars, animals, and plants, endows model with robust object recognition despite its small size. Finally, we design a more efficient training infrastructure for MindWatcher, enhancing training speed and hardware utilization. Experiments not only demonstrate that MindWatcher matches or exceeds the performance of larger or more recent models through superior tool invocation, but also uncover critical insights for agent training, such as the genetic inheritance phenomenon in agentic RL.
3D Asset insertion and novel view synthesis (NVS) are key components for autonomous driving simulation, enhancing the diversity of training data. With better training data that is diverse and covers a wide range of situations, including long-tailed driving scenarios, autonomous driving models can become more robust and safer. This motivates a unified simulation framework that can jointly handle realistic integration of inserted 3D assets and NVS. Recent 3D asset reconstruction methods enable reconstruction of dynamic actors from video, supporting their re-insertion into simulated driving scenes. While the overall structure and appearance can be accurate, it still struggles to capture the realism of 3D assets through lighting or shadows, particularly when inserted into scenes. In parallel, recent advances in NVS methods have demonstrated promising results in synthesizing viewpoints beyond the originally recorded trajectories. However, existing approaches largely treat asset insertion and NVS capabilities in isolation. To allow for interaction with the rest of the scene and to enable more diverse creation of new scenarios for training, realistic 3D asset insertion should be combined with NVS. To address this, we present SCPainter (Street Car Painter), a unified framework which integrates 3D Gaussian Splat (GS) car asset representations and 3D scene point clouds with diffusion-based generation to jointly enable realistic 3D asset insertion and NVS. The 3D GS assets and 3D scene point clouds are projected together into novel views, and these projections are used to condition a diffusion model to generate high quality images. Evaluation on the Waymo Open Dataset demonstrate the capability of our framework to enable 3D asset insertion and NVS, facilitating the creation of diverse and realistic driving data.