Abstract:Developing safety-critical automotive software presents significant challenges due to increasing system complexity and strict regulatory demands. This paper proposes a novel framework integrating Generative Artificial Intelligence (GenAI) into the Software Development Lifecycle (SDLC). The framework uses Large Language Models (LLMs) to automate code generation in languages such as C++, incorporating safety-focused practices such as static verification, test-driven development and iterative refinement. A feedback-driven pipeline ensures the integration of test, simulation and verification for compliance with safety standards. The framework is validated through the development of an Adaptive Cruise Control (ACC) system. Comparative benchmarking of LLMs ensures optimal model selection for accuracy and reliability. Results demonstrate that the framework enables automatic code generation while ensuring compliance with safety-critical requirements, systematically integrating GenAI into automotive software engineering. This work advances the use of AI in safety-critical domains, bridging the gap between state-of-the-art generative models and real-world safety requirements.
Abstract:The controller is one of the most important modules in the autonomous driving pipeline, ensuring the vehicle reaches its desired position. In this work, a reinforcement learning based lateral control approach, despite the imperfections in the vehicle models due to measurement errors and simplifications, is presented. Our approach ensures comfortable, efficient, and robust control performance considering the interface between controlling and other modules. The controller consists of the conventional Model Predictive Control (MPC)-PID part as the basis and the demonstrator, and the Deep Reinforcement Learning (DRL) part which leverages the online information from the MPC-PID part. The controller's performance is evaluated in CARLA using the ground truth of the waypoints as inputs. Experimental results demonstrate the effectiveness of the controller when vehicle information is incomplete, and the training of DRL can be stabilized with the demonstration part. These findings highlight the potential to reduce development and integration efforts for autonomous driving pipelines in the future.
Abstract:We present a prototype of a tool leveraging the synergy of model driven engineering (MDE) and Large Language Models (LLM) for the purpose of software development process automation in the automotive industry. In this approach, the user-provided input is free form textual requirements, which are first translated to Ecore model instance representation using an LLM, which is afterwards checked for consistency using Object Constraint Language (OCL) rules. After successful consistency check, the model instance is fed as input to another LLM for the purpose of code generation. The generated code is evaluated in a simulated environment using CARLA simulator connected to an example centralized vehicle architecture, in an emergency brake scenario.