What is Topic Modeling? Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Papers and Code
May 22, 2025
Abstract:In this paper, we combine two-step knowledge distillation, structured pruning, truncation, and vocabulary trimming for extremely compressing multilingual encoder-only language models for low-resource languages. Our novel approach systematically combines existing techniques and takes them to the extreme, reducing layer depth, feed-forward hidden size, and intermediate layer embedding size to create significantly smaller monolingual models while retaining essential language-specific knowledge. We achieve compression rates of up to 92% with only a marginal performance drop of 2-10% in four downstream tasks, including sentiment analysis, topic classification, named entity recognition, and part-of-speech tagging, across three low-resource languages. Notably, the performance degradation correlates with the amount of language-specific data in the teacher model, with larger datasets resulting in smaller performance losses. Additionally, we conduct extensive ablation studies to identify best practices for multilingual model compression using these techniques.
* Pre-print
Via

May 10, 2025
Abstract:BERTopic is a topic modeling algorithm that leverages transformer-based embeddings to create dense clusters, enabling the estimation of topic structures and the extraction of valuable insights from a corpus of documents. This approach allows users to efficiently process large-scale text data and gain meaningful insights into its structure. While BERTopic is a powerful tool, embedding preparation can vary, including extracting representations from intermediate model layers and applying transformations to these embeddings. In this study, we evaluate 18 different embedding representations and present findings based on experiments conducted on three diverse datasets. To assess the algorithm's performance, we report topic coherence and topic diversity metrics across all experiments. Our results demonstrate that, for each dataset, it is possible to find an embedding configuration that performs better than the default setting of BERTopic. Additionally, we investigate the influence of stop words on different embedding configurations.
Via

May 24, 2025
Abstract:We introduce the Exemplar-Based Expository Text Generation task, aiming to generate an expository text on a new topic using an exemplar on a similar topic. Current methods fall short due to their reliance on extensive exemplar data, difficulty in adapting topic-specific content, and issues with long-text coherence. To address these challenges, we propose the concept of Adaptive Imitation and present a novel Recurrent Plan-then-Adapt (RePA) framework. RePA leverages large language models (LLMs) for effective adaptive imitation through a fine-grained plan-then-adapt process. RePA also enables recurrent segment-by-segment imitation, supported by two memory structures that enhance input clarity and output coherence. We also develop task-specific evaluation metrics--imitativeness, adaptiveness, and adaptive-imitativeness--using LLMs as evaluators. Experimental results across our collected three diverse datasets demonstrate that RePA surpasses existing baselines in producing factual, consistent, and relevant texts for this task.
* Accepted to ACL 2025. Camera-ready version
Via

May 28, 2025
Abstract:Large Reasoning Models (LRMs) have made significant progress in mathematical capabilities in recent times. However, these successes have been primarily confined to competition-level problems. In this work, we propose AI Mathematician (AIM) framework, which harnesses the reasoning strength of LRMs to support frontier mathematical research. We have identified two critical challenges of mathematical research compared to competition, {\it the intrinsic complexity of research problems} and {\it the requirement of procedural rigor}. To address these challenges, AIM incorporates two core strategies: an exploration mechanism to foster longer solution paths, and the pessimistic reasonable verification method to ensure reliability. This early version of AIM already exhibits strong capability in tackling research-level tasks. We conducted extensive experiments across several real-world mathematical topics and obtained promising results. AIM is able to autonomously construct substantial portions of proofs and uncover non-trivial insights within each research area. These findings highlight the potential of LRMs in mathematical discovery and suggest that LRM-based agent systems could significantly accelerate mathematical research in the future.
* 95 pages, 1 figure
Via

May 26, 2025
Abstract:Recently, large language models (LLMs) have demonstrated remarkable capabilities in natural language processing tasks, yet they remain prone to hallucinations when reasoning with insufficient internal knowledge. While integrating LLMs with knowledge graphs (KGs) provides access to structured, verifiable information, existing approaches often generate incomplete or factually inconsistent reasoning paths. To this end, we propose Self-Reflective Planning (SRP), a framework that synergizes LLMs with KGs through iterative, reference-guided reasoning. Specifically, given a question and topic entities, SRP first searches for references to guide planning and reflection. In the planning process, it checks initial relations and generates a reasoning path. After retrieving knowledge from KGs through a reasoning path, it implements iterative reflection by judging the retrieval result and editing the reasoning path until the answer is correctly retrieved. Extensive experiments on three public datasets demonstrate that SRP surpasses various strong baselines and further underscore its reliable reasoning ability.
Via

May 27, 2025
Abstract:Recent advancements in large language models (LLMs) have shown promise in generating novel research ideas. However, these ideas often face challenges related to feasibility and expected effectiveness. This paper explores how augmenting LLMs with relevant data during the idea generation process can enhance the quality of generated ideas. We introduce two ways of incorporating data: (1) providing metadata during the idea generation stage to guide LLMs toward feasible directions, and (2) adding automatic validation during the idea selection stage to assess the empirical plausibility of hypotheses within ideas. We conduct experiments in the social science domain, specifically with climate negotiation topics, and find that metadata improves the feasibility of generated ideas by 20%, while automatic validation improves the overall quality of selected ideas by 7%. A human study shows that LLM-generated ideas, along with their related data and validation processes, inspire researchers to propose research ideas with higher quality. Our work highlights the potential of data-driven research idea generation, and underscores the practical utility of LLM-assisted ideation in real-world academic settings.
Via

May 09, 2025
Abstract:The concept of openness in AI has so far been heavily inspired by the definition and community practice of open source software. This positions openness in AI as having positive connotations; it introduces assumptions of certain advantages, such as collaborative innovation and transparency. However, the practices and benefits of open source software are not fully transferable to AI, which has its own challenges. Framing a notion of openness tailored to AI is crucial to addressing its growing societal implications, risks, and capabilities. We argue that considering the fundamental scope of openness in different disciplines will broaden discussions, introduce important perspectives, and reflect on what openness in AI should mean. Toward this goal, we qualitatively analyze 98 concepts of openness discovered from topic modeling, through which we develop a taxonomy of openness. Using this taxonomy as an instrument, we situate the current discussion on AI openness, identify gaps and highlight links with other disciplines. Our work contributes to the recent efforts in framing openness in AI by reflecting principles and practices of openness beyond open source software and calls for a more holistic view of openness in terms of actions, system properties, and ethical objectives.
* To appear in ACM Conference on Fairness, Accountability, and
Transparency (ACM FAccT) 2025
Via

May 26, 2025
Abstract:Human-like agents are an increasingly important topic in games and beyond. Believable non-player characters enhance the gaming experience by improving immersion and providing entertainment. They also offer players the opportunity to engage with AI entities that can function as opponents, teachers, or cooperating partners. Additionally, in games where bots are prohibited -- and even more so in non-game environments -- there is a need for methods capable of identifying whether digital interactions occur with bots or humans. This leads to two fundamental research questions: (1) how to model and implement human-like AI, and (2) how to measure its degree of human likeness. This article offers two contributions. The first one is a survey of the most significant challenges in implementing human-like AI in games (or any virtual environment featuring simulated agents, although this article specifically focuses on games). Thirteen such challenges, both conceptual and technical, are discussed in detail. The second is an empirical study performed in a tactical video game that addresses the research question: "Is it possible to distinguish human players from bots (AI agents) based on empirical data?" A machine-learning approach using a custom deep recurrent convolutional neural network is presented. We hypothesize that the more challenging it is to create human-like AI for a given game, the easier it becomes to develop a method for distinguishing humans from AI-driven players.
* In proceedings of the 24th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS-2025), pages 1996--2005, May 19-23,
Detroit, Michigan, USA
Via

May 17, 2025
Abstract:The transformer architecture has demonstrated remarkable capabilities in modern artificial intelligence, among which the capability of implicitly learning an internal model during inference time is widely believed to play a key role in the under standing of pre-trained large language models. However, most recent works have been focusing on studying supervised learning topics such as in-context learning, leaving the field of unsupervised learning largely unexplored. This paper investigates the capabilities of transformers in solving Gaussian Mixture Models (GMMs), a fundamental unsupervised learning problem through the lens of statistical estimation. We propose a transformer-based learning framework called TGMM that simultaneously learns to solve multiple GMM tasks using a shared transformer backbone. The learned models are empirically demonstrated to effectively mitigate the limitations of classical methods such as Expectation-Maximization (EM) or spectral algorithms, at the same time exhibit reasonable robustness to distribution shifts. Theoretically, we prove that transformers can approximate both the EM algorithm and a core component of spectral methods (cubic tensor power iterations). These results bridge the gap between practical success and theoretical understanding, positioning transformers as versatile tools for unsupervised learning.
Via

May 20, 2025
Abstract:Warning: This paper contains examples of harmful language and images. Reader discretion is advised. Recently, vision-language models have demonstrated increasing influence in morally sensitive domains such as autonomous driving and medical analysis, owing to their powerful multimodal reasoning capabilities. As these models are deployed in high-stakes real-world applications, it is of paramount importance to ensure that their outputs align with human moral values and remain within moral boundaries. However, existing work on moral alignment either focuses solely on textual modalities or relies heavily on AI-generated images, leading to distributional biases and reduced realism. To overcome these limitations, we introduce MORALISE, a comprehensive benchmark for evaluating the moral alignment of vision-language models (VLMs) using diverse, expert-verified real-world data. We begin by proposing a comprehensive taxonomy of 13 moral topics grounded in Turiel's Domain Theory, spanning the personal, interpersonal, and societal moral domains encountered in everyday life. Built on this framework, we manually curate 2,481 high-quality image-text pairs, each annotated with two fine-grained labels: (1) topic annotation, identifying the violated moral topic(s), and (2) modality annotation, indicating whether the violation arises from the image or the text. For evaluation, we encompass two tasks, \textit{moral judgment} and \textit{moral norm attribution}, to assess models' awareness of moral violations and their reasoning ability on morally salient content. Extensive experiments on 19 popular open- and closed-source VLMs show that MORALISE poses a significant challenge, revealing persistent moral limitations in current state-of-the-art models. The full benchmark is publicly available at https://huggingface.co/datasets/Ze1025/MORALISE.
* 21 pages, 11 figures, 7 tables
Via
