Abstract:Soft prompts have emerged as a powerful alternative to adapters in parameter-efficient fine-tuning (PEFT), enabling large language models (LLMs) to adapt to downstream tasks without architectural changes or parameter updates. While prior work has focused on stabilizing training via parameter interaction in small neural prompt encoders, their broader potential for transfer across languages remains unexplored. In this paper, we demonstrate that a prompt encoder can play a central role in improving performance on low-performing languages-those that achieve poor accuracy even under full-model fine-tuning. We introduce the Cross-Prompt Encoder (XPE), which combines a lightweight encoding architecture with multi-source training on typologically diverse languages - a design that enables the model to capture abstract and transferable patterns across languages. To complement XPE, we propose a Dual Soft Prompt mechanism that combines an encoder-based prompt with a directly trained standard soft prompt. This hybrid design proves especially effective for target languages that benefit from both broadly shared structure and language-specific alignment. Experiments on the SIB-200 benchmark reveal a consistent trade-off: XPE is most effective for low-performing languages, while hybrid variants offer broader adaptability across multilingual settings.
Abstract:Large language models (LLMs) exhibit strong multilingual abilities, yet the neural mechanisms behind language-specific processing remain unclear. We analyze language-specific neurons in Llama-3.1-8B, Mistral-Nemo-12B, and Aya-Expanse-8B & 32B across 21 typologically diverse languages, identifying neurons that control language behavior. Using the Language Activation Probability Entropy (LAPE) method, we show that these neurons cluster in deeper layers, with non-Latin scripts showing greater specialization. Related languages share overlapping neurons, reflecting internal representations of linguistic proximity. Through language arithmetics, i.e. systematic activation addition and multiplication, we steer models to deactivate unwanted languages and activate desired ones, outperforming simpler replacement approaches. These interventions effectively guide behavior across five multilingual tasks: language forcing, translation, QA, comprehension, and NLI. Manipulation is more successful for high-resource languages, while typological similarity improves effectiveness. We also demonstrate that cross-lingual neuron steering enhances downstream performance and reveal internal "fallback" mechanisms for language selection when neurons are progressively deactivated. Our code is made publicly available at https://github.com/d-gurgurov/Language-Neurons-Manipulation.
Abstract:Large language models (LLMs) are increasingly used in everyday tools and applications, raising concerns about their potential influence on political views. While prior research has shown that LLMs often exhibit measurable political biases--frequently skewing toward liberal or progressive positions--key gaps remain. Most existing studies evaluate only a narrow set of models and languages, leaving open questions about the generalizability of political biases across architectures, scales, and multilingual settings. Moreover, few works examine whether these biases can be actively controlled. In this work, we address these gaps through a large-scale study of political orientation in modern open-source instruction-tuned LLMs. We evaluate seven models, including LLaMA-3.1, Qwen-3, and Aya-Expanse, across 14 languages using the Political Compass Test with 11 semantically equivalent paraphrases per statement to ensure robust measurement. Our results reveal that larger models consistently shift toward libertarian-left positions, with significant variations across languages and model families. To test the manipulability of political stances, we utilize a simple center-of-mass activation intervention technique and show that it reliably steers model responses toward alternative ideological positions across multiple languages. Our code is publicly available at https://github.com/d-gurgurov/Political-Ideologies-LLMs.
Abstract:Large Language Models (LLMs) are increasingly used to generate synthetic textual data for training smaller specialized models. However, a comparison of various generation strategies for low-resource language settings is lacking. While various prompting strategies have been proposed, such as demonstrations, label-based summaries, and self-revision, their comparative effectiveness remains unclear, especially for low-resource languages. In this paper, we systematically evaluate the performance of these generation strategies and their combinations across 11 typologically diverse languages, including several extremely low-resource ones. Using three NLP tasks and four open-source LLMs, we assess downstream model performance on generated versus gold-standard data. Our results show that strategic combinations of generation methods, particularly target-language demonstrations with LLM-based revisions, yield strong performance, narrowing the gap with real data to as little as 5% in some settings. We also find that smart prompting techniques can reduce the advantage of larger LLMs, highlighting efficient generation strategies for synthetic data generation in low-resource scenarios with smaller models.
Abstract:In this paper, we combine two-step knowledge distillation, structured pruning, truncation, and vocabulary trimming for extremely compressing multilingual encoder-only language models for low-resource languages. Our novel approach systematically combines existing techniques and takes them to the extreme, reducing layer depth, feed-forward hidden size, and intermediate layer embedding size to create significantly smaller monolingual models while retaining essential language-specific knowledge. We achieve compression rates of up to 92% with only a marginal performance drop of 2-10% in four downstream tasks, including sentiment analysis, topic classification, named entity recognition, and part-of-speech tagging, across three low-resource languages. Notably, the performance degradation correlates with the amount of language-specific data in the teacher model, with larger datasets resulting in smaller performance losses. Additionally, we conduct extensive ablation studies to identify best practices for multilingual model compression using these techniques.
Abstract:Quantization methods are widely used to accelerate inference and streamline the deployment of large language models (LLMs). While prior research has extensively investigated the degradation of various LLM capabilities due to quantization, its effects on model explainability and interpretability, which are crucial for understanding decision-making processes, remain unexplored. To address this gap, we conduct comprehensive experiments using three common quantization techniques at distinct bit widths, in conjunction with two explainability methods, counterfactual examples and natural language explanations, as well as two interpretability approaches, knowledge memorization analysis and latent multi-hop reasoning analysis. We complement our analysis with a thorough user study, evaluating selected explainability methods. Our findings reveal that, depending on the configuration, quantization can significantly impact model explainability and interpretability. Notably, the direction of this effect is not consistent, as it strongly depends on (1) the quantization method, (2) the explainability or interpretability approach, and (3) the evaluation protocol. In some settings, human evaluation shows that quantization degrades explainability, while in others, it even leads to improvements. Our work serves as a cautionary tale, demonstrating that quantization can unpredictably affect model transparency. This insight has important implications for deploying LLMs in applications where transparency is a critical requirement.
Abstract:The rapid spread of online disinformation presents a global challenge, and machine learning has been widely explored as a potential solution. However, multilingual settings and low-resource languages are often neglected in this field. To address this gap, we conducted a shared task on multilingual claim retrieval at SemEval 2025, aimed at identifying fact-checked claims that match newly encountered claims expressed in social media posts across different languages. The task includes two subtracks: (1) a monolingual track, where social posts and claims are in the same language, and (2) a crosslingual track, where social posts and claims might be in different languages. A total of 179 participants registered for the task contributing to 52 test submissions. 23 out of 31 teams have submitted their system papers. In this paper, we report the best-performing systems as well as the most common and the most effective approaches across both subtracks. This shared task, along with its dataset and participating systems, provides valuable insights into multilingual claim retrieval and automated fact-checking, supporting future research in this field.
Abstract:Psychodynamic conflicts are persistent, often unconscious themes that shape a person's behaviour and experiences. Accurate diagnosis of psychodynamic conflicts is crucial for effective patient treatment and is commonly done via long, manually scored semi-structured interviews. Existing automated solutions for psychiatric diagnosis tend to focus on the recognition of broad disorder categories such as depression, and it is unclear to what extent psychodynamic conflicts which even the patient themselves may not have conscious access to could be automatically recognised from conversation. In this paper, we propose AutoPsyC, the first method for recognising the presence and significance of psychodynamic conflicts from full-length Operationalized Psychodynamic Diagnostics (OPD) interviews using Large Language Models (LLMs). Our approach combines recent advances in parameter-efficient fine-tuning and Retrieval-Augmented Generation (RAG) with a summarisation strategy to effectively process entire 90 minute long conversations. In evaluations on a dataset of 141 diagnostic interviews we show that AutoPsyC consistently outperforms all baselines and ablation conditions on the recognition of four highly relevant psychodynamic conflicts.
Abstract:In our era of widespread false information, human fact-checkers often face the challenge of duplicating efforts when verifying claims that may have already been addressed in other countries or languages. As false information transcends linguistic boundaries, the ability to automatically detect previously fact-checked claims across languages has become an increasingly important task. This paper presents the first comprehensive evaluation of large language models (LLMs) for multilingual previously fact-checked claim detection. We assess seven LLMs across 20 languages in both monolingual and cross-lingual settings. Our results show that while LLMs perform well for high-resource languages, they struggle with low-resource languages. Moreover, translating original texts into English proved to be beneficial for low-resource languages. These findings highlight the potential of LLMs for multilingual previously fact-checked claim detection and provide a foundation for further research on this promising application of LLMs.
Abstract:Autoregressive large language models (LLMs) exhibit impressive performance across various tasks but struggle with simple arithmetic, such as addition of two or more operands. We show that this struggle arises from LLMs' use of a simple one-digit lookahead heuristic, which works fairly well (but not perfect) for two-operand addition but fails in multi-operand cases, where the carry-over logic is more complex. Our probing experiments and digit-wise accuracy evaluation show that LLMs fail precisely where a one-digit lookahead is insufficient to account for cascading carries. We analyze the impact of tokenization strategies on arithmetic performance and show that all investigated models, regardless of tokenization, are inherently limited in the addition of multiple operands due to their reliance on a one-digit lookahead heuristic. Our findings reveal fundamental limitations that prevent LLMs from generalizing to more complex numerical reasoning.