Topic:Text Classification
What is Text Classification? Text classification is the process of categorizing text documents into predefined categories or labels.
Papers and Code
Jun 08, 2025
Abstract:Progress in Natural Language Processing (NLP) has been dictated by the rule of more: more data, more computing power and more complexity, best exemplified by the Large Language Models. However, training (or fine-tuning) large dense models for specific applications usually requires significant amounts of computing resources. This \textbf{Ph.D. dissertation} focuses on an under-investi\-gated NLP data engineering technique, whose potential is enormous in the current scenario known as Instance Selection (IS). The IS goal is to reduce the training set size by removing noisy or redundant instances while maintaining the effectiveness of the trained models and reducing the training process cost. We provide a comprehensive and scientifically sound comparison of IS methods applied to an essential NLP task -- Automatic Text Classification (ATC), considering several classification solutions and many datasets. Our findings reveal a significant untapped potential for IS solutions. We also propose two novel IS solutions that are noise-oriented and redundancy-aware, specifically designed for large datasets and transformer architectures. Our final solution achieved an average reduction of 41\% in training sets, while maintaining the same levels of effectiveness in all datasets. Importantly, our solutions demonstrated speedup improvements of 1.67x (up to 2.46x), making them scalable for datasets with hundreds of thousands of documents.
* 16 pages, 5 figures, 2 tables
Via

Jun 17, 2025
Abstract:In the era of digitalization, as individuals increasingly rely on digital platforms for communication and news consumption, various actors employ linguistic strategies to influence public perception. While models have become proficient at detecting explicit patterns, which typically appear in texts as single remarks referred to as utterances, such as social media posts, malicious actors have shifted toward utilizing implicit influential verbal patterns embedded within conversations. These verbal patterns aim to mentally penetrate the victim's mind in order to influence them, enabling the actor to obtain the desired information through implicit means. This paper presents an improved approach for detecting such implicit influential patterns. Furthermore, the proposed model is capable of identifying the specific locations of these influential elements within a conversation. To achieve this, the existing dataset was augmented using the reasoning capabilities of state-of-the-art language models. Our designed framework resulted in a 6% improvement in the detection of implicit influential patterns in conversations. Moreover, this approach improved the multi-label classification tasks related to both the techniques used for influence and the vulnerability of victims by 33% and 43%, respectively.
* Accepted at the HCI International conference 2025
Via

Jun 10, 2025
Abstract:Millions of players engage daily in competitive online games, communicating through in-game chat. Prior research has focused on detecting relatively small volumes of toxic content using various Natural Language Processing (NLP) techniques for the purpose of moderation. However, recent studies emphasize the importance of detecting prosocial communication, which can be as crucial as identifying toxic interactions. Recognizing prosocial behavior allows for its analysis, rewarding, and promotion. Unlike toxicity, there are limited datasets, models, and resources for identifying prosocial behaviors in game-chat text. In this work, we employed unsupervised discovery combined with game domain expert collaboration to identify and categorize prosocial player behaviors from game chat. We further propose a novel Self-Anchored Attention Model (SAAM) which gives 7.9% improvement compared to the best existing technique. The approach utilizes the entire training set as "anchors" to help improve model performance under the scarcity of training data. This approach led to the development of the first automated system for classifying prosocial behaviors in in-game chats, particularly given the low-resource settings where large-scale labeled data is not available. Our methodology was applied to one of the most popular online gaming titles - Call of Duty(R): Modern Warfare(R)II, showcasing its effectiveness. This research is novel in applying NLP techniques to discover and classify prosocial behaviors in player in-game chat communication. It can help shift the focus of moderation from solely penalizing toxicity to actively encouraging positive interactions on online platforms.
Via

Jun 12, 2025
Abstract:Learning medical visual representations from image-report pairs through joint learning has garnered increasing research attention due to its potential to alleviate the data scarcity problem in the medical domain. The primary challenges stem from the lengthy reports that feature complex discourse relations and semantic pathologies. Previous works have predominantly focused on instance-wise or token-wise cross-modal alignment, often neglecting the importance of pathological-level consistency. This paper presents a novel framework PLACE that promotes the Pathological-Level Alignment and enriches the fine-grained details via Correlation Exploration without additional human annotations. Specifically, we propose a novel pathological-level cross-modal alignment (PCMA) approach to maximize the consistency of pathology observations from both images and reports. To facilitate this, a Visual Pathology Observation Extractor is introduced to extract visual pathological observation representations from localized tokens. The PCMA module operates independently of any external disease annotations, enhancing the generalizability and robustness of our methods. Furthermore, we design a proxy task that enforces the model to identify correlations among image patches, thereby enriching the fine-grained details crucial for various downstream tasks. Experimental results demonstrate that our proposed framework achieves new state-of-the-art performance on multiple downstream tasks, including classification, image-to-text retrieval, semantic segmentation, object detection and report generation.
* 12 pages, 10 tables and 6 figures
Via

Jun 11, 2025
Abstract:Large Language Models (LLMs) and other neural architectures have achieved impressive results across a variety of generative and classification tasks. However, they remain fundamentally ill-equipped to ensure that their outputs satisfy temporal constraints, such as those expressible in Linear Temporal Logic over finite traces (LTLf). In this paper, we introduce TRIDENT: a general and model-agnostic inference-time algorithm that guarantees compliance with such constraints without requiring any retraining. TRIDENT compiles LTLf formulas into a Deterministic Finite Automaton (DFA), which is used to guide a constrained variant of beam search. At each decoding step, transitions that would lead to constraint violations are masked, while remaining paths are dynamically re-ranked based on both the model's probabilities and the DFA's acceptance structure. We formally prove that the resulting sequences are guaranteed to satisfy the given LTLf constraints, and we empirically demonstrate that TRIDENT also improves output quality. We validate our approach on two distinct tasks: temporally constrained image-stream classification and controlled text generation. In both settings, TRIDENT achieves perfect constraint satisfaction, while comparison with the state of the art shows improved efficiency and high standard quality metrics.
Via

Jun 14, 2025
Abstract:Recent advances in audio-text large language models (LLMs) have opened new possibilities for music understanding and generation. However, existing benchmarks are limited in scope, often relying on simplified tasks or multi-choice evaluations that fail to reflect the complexity of real-world music analysis. We reinterpret a broad range of traditional MIR annotations as instruction-following formats and introduce CMI-Bench, a comprehensive music instruction following benchmark designed to evaluate audio-text LLMs on a diverse set of music information retrieval (MIR) tasks. These include genre classification, emotion regression, emotion tagging, instrument classification, pitch estimation, key detection, lyrics transcription, melody extraction, vocal technique recognition, instrument performance technique detection, music tagging, music captioning, and (down)beat tracking: reflecting core challenges in MIR research. Unlike previous benchmarks, CMI-Bench adopts standardized evaluation metrics consistent with previous state-of-the-art MIR models, ensuring direct comparability with supervised approaches. We provide an evaluation toolkit supporting all open-source audio-textual LLMs, including LTU, Qwen-audio, SALMONN, MusiLingo, etc. Experiment results reveal significant performance gaps between LLMs and supervised models, along with their culture, chronological and gender bias, highlighting the potential and limitations of current models in addressing MIR tasks. CMI-Bench establishes a unified foundation for evaluating music instruction following, driving progress in music-aware LLMs.
* Accepted by ISMIR 2025
Via

Jun 11, 2025
Abstract:Often when we interact with a first-person account of events, we consider whether or not the narrator, the primary speaker of the text, is reliable. In this paper, we propose using computational methods to identify unreliable narrators, i.e. those who unintentionally misrepresent information. Borrowing literary theory from narratology to define different types of unreliable narrators based on a variety of textual phenomena, we present TUNa, a human-annotated dataset of narratives from multiple domains, including blog posts, subreddit posts, hotel reviews, and works of literature. We define classification tasks for intra-narrational, inter-narrational, and inter-textual unreliabilities and analyze the performance of popular open-weight and proprietary LLMs for each. We propose learning from literature to perform unreliable narrator classification on real-world text data. To this end, we experiment with few-shot, fine-tuning, and curriculum learning settings. Our results show that this task is very challenging, and there is potential for using LLMs to identify unreliable narrators. We release our expert-annotated dataset and code and invite future research in this area.
* ACL 2025
Via

Jun 15, 2025
Abstract:Existing segmentation models trained on a single medical imaging dataset often lack robustness when encountering unseen organs or tumors. Developing a robust model capable of identifying rare or novel tumor categories not present during training is crucial for advancing medical imaging applications. We propose DSM, a novel framework that leverages diffusion and state space models to segment unseen tumor categories beyond the training data. DSM utilizes two sets of object queries trained within modified attention decoders to enhance classification accuracy. Initially, the model learns organ queries using an object-aware feature grouping strategy to capture organ-level visual features. It then refines tumor queries by focusing on diffusion-based visual prompts, enabling precise segmentation of previously unseen tumors. Furthermore, we incorporate diffusion-guided feature fusion to improve semantic segmentation performance. By integrating CLIP text embeddings, DSM captures category-sensitive classes to improve linguistic transfer knowledge, thereby enhancing the model's robustness across diverse scenarios and multi-label tasks. Extensive experiments demonstrate the superior performance of DSM in various tumor segmentation tasks. Code is available at https://github.com/Rows21/KMax-Mamba.
Via

Jun 11, 2025
Abstract:A comprehensive understanding of traffic accidents is essential for improving city safety and informing policy decisions. In this study, we analyze traffic incidents in Munich to identify patterns and characteristics that distinguish different types of accidents. The dataset consists of both structured tabular features, such as location, time, and weather conditions, as well as unstructured free-text descriptions detailing the circumstances of each accident. Each incident is categorized into one of seven predefined classes. To assess the reliability of these labels, we apply NLP methods, including topic modeling and few-shot learning, which reveal inconsistencies in the labeling process. These findings highlight potential ambiguities in accident classification and motivate a refined predictive approach. Building on these insights, we develop a classification model that achieves high accuracy in assigning accidents to their respective categories. Our results demonstrate that textual descriptions contain the most informative features for classification, while the inclusion of tabular data provides only marginal improvements. These findings emphasize the critical role of free-text data in accident analysis and highlight the potential of transformer-based models in improving classification reliability.
* 18 pages, 4 tables, 4 figures. This paper will appear in the
ECML-PKDD 2025 Applied Data Science (ADS) track
Via

Jun 06, 2025
Abstract:Our contribution to the SemEval 2025 shared task 10, subtask 1 on entity framing, tackles the challenge of providing the necessary segments from longer documents as context for classification with a masked language model. We show that a simple entity-oriented heuristics for context selection can enable text classification using models with limited context window. Our context selection approach and the XLM-RoBERTa language model is on par with, or outperforms, Supervised Fine-Tuning with larger generative language models.
* Accepted for SemEval 2025; The 19th International Workshop on
Semantic Evaluation
Via
