Department of Statistics, LMU Munich, Munich Center for Machine Learning
Abstract:Semi-implicit variational inference (SIVI) is a powerful framework for approximating complex posterior distributions, but training with the Kullback-Leibler (KL) divergence can be challenging due to high variance and bias in high-dimensional settings. While current state-of-the-art semi-implicit variational inference methods, particularly Kernel Semi-Implicit Variational Inference (KSIVI), have been shown to work in high dimensions, training remains moderately expensive. In this work, we propose a kernelized KL divergence estimator that stabilizes training through nonparametric smoothing. To further reduce the bias, we introduce an importance sampling correction. We provide a theoretical connection to the amortized version of the Stein variational gradient descent, which estimates the score gradient via Stein's identity, showing that both methods minimize the same objective, but our semi-implicit approach achieves lower gradient variance. In addition, our method's bias in function space is benign, leading to more stable and efficient optimization. Empirical results demonstrate that our method outperforms or matches state-of-the-art SIVI methods in both performance and training efficiency.
Abstract:Recent years have witnessed growing interest in semi-implicit variational inference (SIVI) methods due to their ability to rapidly generate samples from complex distributions. However, since the likelihood of these samples is non-trivial to estimate in high dimensions, current research focuses on finding effective SIVI training routines. Although unbiased implicit variational inference (UIVI) has largely been dismissed as imprecise and computationally prohibitive because of its inner MCMC loop, we revisit this method and show that UIVI's MCMC loop can be effectively replaced via importance sampling and the optimal proposal distribution can be learned stably by minimizing an expected forward Kullback-Leibler divergence without bias. Our refined approach demonstrates superior performance or parity with state-of-the-art methods on established SIVI benchmarks.
Abstract:Training neural networks on randomly generated artificial datasets yields Bayesian models that capture the prior defined by the dataset-generating distribution. Prior-data Fitted Networks (PFNs) are a class of methods designed to leverage this insight. In an era of rapidly increasing computational resources for pre-training and a near stagnation in the generation of new real-world data in many applications, PFNs are poised to play a more important role across a wide range of applications. They enable the efficient allocation of pre-training compute to low-data scenarios. Originally applied to small Bayesian modeling tasks, the field of PFNs has significantly expanded to address more complex domains and larger datasets. This position paper argues that PFNs and other amortized inference approaches represent the future of Bayesian inference, leveraging amortized learning to tackle data-scarce problems. We thus believe they are a fruitful area of research. In this position paper, we explore their potential and directions to address their current limitations.
Abstract:Diffusion Tensor Imaging (DTI) tractography offers detailed insights into the structural connectivity of the brain, but presents challenges in effective representation and interpretation in deep learning models. In this work, we propose a novel 2D representation of DTI tractography that encodes tract-level fractional anisotropy (FA) values into a 9x9 grayscale image. This representation is processed through a Beta-Total Correlation Variational Autoencoder with a Spatial Broadcast Decoder to learn a disentangled and interpretable latent embedding. We evaluate the quality of this embedding using supervised and unsupervised representation learning strategies, including auxiliary classification, triplet loss, and SimCLR-based contrastive learning. Compared to the 1D Group deep neural network (DNN) baselines, our approach improves the F1 score in a downstream sex classification task by 15.74% and shows a better disentanglement than the 3D representation.
Abstract:Density regression models allow a comprehensive understanding of data by modeling the complete conditional probability distribution. While flexible estimation approaches such as normalizing flows (NF) work particularly well in multiple dimensions, interpreting the input-output relationship of such models is often difficult, due to the black-box character of deep learning models. In contrast, existing statistical methods for multivariate outcomes such as multivariate conditional transformation models (MCTM) are restricted in flexibility and are often not expressive enough to represent complex multivariate probability distributions. In this paper, we combine MCTM with state-of-the-art and autoregressive NF to leverage the transparency of MCTM for modeling interpretable feature effects on the marginal distributions in the first step and the flexibility of neural-network-based NF techniques to account for complex and non-linear relationships in the joint data distribution. We demonstrate our method's versatility in various numerical experiments and compare it with MCTM and other NF models on both simulated and real-world data.
Abstract:Prior-data fitted networks (PFNs) have emerged as promising foundation models for prediction from tabular data sets, achieving state-of-the-art performance on small to moderate data sizes without tuning. While PFNs are motivated by Bayesian ideas, they do not provide any uncertainty quantification for predictive means, quantiles, or similar quantities. We propose a principled and efficient sampling procedure to construct Bayesian posteriors for such estimates based on Martingale posteriors, and prove its convergence. Several simulated and real-world data examples showcase the uncertainty quantification of our method in inference applications.
Abstract:Cell tracking is a key computational task in live-cell microscopy, but fully automated analysis of high-throughput imaging requires reliable and, thus, uncertainty-aware data analysis tools, as the amount of data recorded within a single experiment exceeds what humans are able to overlook. We here propose and benchmark various methods to reason about and quantify uncertainty in linear assignment-based cell tracking algorithms. Our methods take inspiration from statistics and machine learning, leveraging two perspectives on the cell tracking problem explored throughout this work: Considering it as a Bayesian inference problem and as a classification problem. Our methods admit a framework-like character in that they equip any frame-to-frame tracking method with uncertainty quantification. We demonstrate this by applying it to various existing tracking algorithms including the recently presented Transformer-based trackers. We demonstrate empirically that our methods yield useful and well-calibrated tracking uncertainties.
Abstract:Additive models (AMs) have sparked a lot of interest in machine learning recently, allowing the incorporation of interpretable structures into a wide range of model classes. Many commonly used approaches to fit a wide variety of potentially complex additive models build on the idea of boosting additive models. While boosted additive models (BAMs) work well in practice, certain theoretical aspects are still poorly understood, including general convergence behavior and what optimization problem is being solved when accounting for the implicit regularizing nature of boosting. In this work, we study the solution paths of BAMs and establish connections with other approaches for certain classes of problems. Along these lines, we derive novel convergence results for BAMs, which yield crucial insights into the inner workings of the method. While our results generally provide reassuring theoretical evidence for the practical use of BAMs, they also uncover some ``pathologies'' of boosting for certain additive model classes concerning their convergence behavior that require caution in practice. We empirically validate our theoretical findings through several numerical experiments.
Abstract:Understanding the structure of neural network loss surfaces, particularly the emergence of low-loss tunnels, is critical for advancing neural network theory and practice. In this paper, we propose a novel approach to directly embed loss tunnels into the loss landscape of neural networks. Exploring the properties of these loss tunnels offers new insights into their length and structure and sheds light on some common misconceptions. We then apply our approach to Bayesian neural networks, where we improve subspace inference by identifying pitfalls and proposing a more natural prior that better guides the sampling procedure.
Abstract:Fine-tuned large language models (LLMs) often exhibit overconfidence, particularly when trained on small datasets, resulting in poor calibration and inaccurate uncertainty estimates. Evidential Deep Learning (EDL), an uncertainty-aware approach, enables uncertainty estimation in a single forward pass, making it a promising method for calibrating fine-tuned LLMs. However, despite its computational efficiency, EDL is prone to overfitting, as its training objective can result in overly concentrated probability distributions. To mitigate this, we propose regularizing EDL by incorporating an information bottleneck (IB). Our approach IB-EDL suppresses spurious information in the evidence generated by the model and encourages truly predictive information to influence both the predictions and uncertainty estimates. Extensive experiments across various fine-tuned LLMs and tasks demonstrate that IB-EDL outperforms both existing EDL and non-EDL approaches. By improving the trustworthiness of LLMs, IB-EDL facilitates their broader adoption in domains requiring high levels of confidence calibration. Code is available at https://github.com/sandylaker/ib-edl.