Abstract:A comprehensive understanding of traffic accidents is essential for improving city safety and informing policy decisions. In this study, we analyze traffic incidents in Munich to identify patterns and characteristics that distinguish different types of accidents. The dataset consists of both structured tabular features, such as location, time, and weather conditions, as well as unstructured free-text descriptions detailing the circumstances of each accident. Each incident is categorized into one of seven predefined classes. To assess the reliability of these labels, we apply NLP methods, including topic modeling and few-shot learning, which reveal inconsistencies in the labeling process. These findings highlight potential ambiguities in accident classification and motivate a refined predictive approach. Building on these insights, we develop a classification model that achieves high accuracy in assigning accidents to their respective categories. Our results demonstrate that textual descriptions contain the most informative features for classification, while the inclusion of tabular data provides only marginal improvements. These findings emphasize the critical role of free-text data in accident analysis and highlight the potential of transformer-based models in improving classification reliability.
Abstract:Many pre-trained language models (PLMs) exhibit suboptimal performance on mid- and low-resource languages, largely due to limited exposure to these languages during pre-training. A common strategy to address this is to introduce new tokens specific to the target languages, initialize their embeddings, and apply continual pre-training on target-language data. Among such methods, OFA (Liu et al., 2024a) proposes a similarity-based subword embedding initialization heuristic that is both effective and efficient. However, OFA restricts target-language token embeddings to be convex combinations of a fixed number of source-language embeddings, which may limit expressiveness. To overcome this limitation, we propose HYPEROFA, a hypernetwork-based approach for more adaptive token embedding initialization. The hypernetwork is trained to map from an external multilingual word vector space to the PLMs token embedding space using source-language tokens. Once trained, it can generate flexible embeddings for target-language tokens, serving as a good starting point for continual pretraining. Experiments demonstrate that HYPEROFA consistently outperforms random initialization baseline and matches or exceeds the performance of OFA in both continual pre-training convergence and downstream task performance. We make the code publicly available.
Abstract:The increasing applications of autonomous driving systems necessitates large-scale, high-quality datasets to ensure robust performance across diverse scenarios. Synthetic data has emerged as a viable solution to augment real-world datasets due to its cost-effectiveness, availability of precise ground-truth labels, and the ability to model specific edge cases. However, synthetic data may introduce distributional differences and biases that could impact model performance in real-world settings. To evaluate the utility and limitations of synthetic data, we conducted controlled experiments using multiple real-world datasets and a synthetic dataset generated by BIT Technology Solutions GmbH. Our study spans two sensor modalities, camera and LiDAR, and investigates both 2D and 3D object detection tasks. We compare models trained on real, synthetic, and mixed datasets, analyzing their robustness and generalization capabilities. Our findings demonstrate that the use of a combination of real and synthetic data improves the robustness and generalization of object detection models, underscoring the potential of synthetic data in advancing autonomous driving technologies.