Topic:Information Extraction
What is Information Extraction? Information extraction is the process of automatically extracting structured information from unstructured text data.
Papers and Code
Jun 24, 2025
Abstract:Accessibility remains a critical concern in today's society, as many technologies are not developed to support the full range of user needs. Existing multi-agent systems (MAS) often cannot provide comprehensive assistance for users in need due to the lack of customization stemming from closed-source designs. Consequently, individuals with disabilities frequently encounter significant barriers when attempting to interact with digital environments. We introduce MATE, a multimodal accessibility MAS, which performs the modality conversions based on the user's needs. The system is useful for assisting people with disabilities by ensuring that data will be converted to an understandable format. For instance, if the user cannot see well and receives an image, the system converts this image to its audio description. MATE can be applied to a wide range of domains, industries, and areas, such as healthcare, and can become a useful assistant for various groups of users. The system supports multiple types of models, ranging from LLM API calling to using custom machine learning (ML) classifiers. This flexibility ensures that the system can be adapted to various needs and is compatible with a wide variety of hardware. Since the system is expected to run locally, it ensures the privacy and security of sensitive information. In addition, the framework can be effectively integrated with institutional technologies (e.g., digital healthcare service) for real-time user assistance. Furthermore, we introduce ModCon-Task-Identifier, a model that is capable of extracting the precise modality conversion task from the user input. Numerous experiments show that ModCon-Task-Identifier consistently outperforms other LLMs and statistical models on our custom data. Our code and data are publicly available at https://github.com/AlgazinovAleksandr/Multi-Agent-MATE.
Via

Jun 18, 2025
Abstract:In the ever-expanding domain of 5G-NR wireless cellular networks, over-the-air jamming attacks are prevalent as security attacks, compromising the quality of the received signal. We simulate a jamming environment by incorporating additive white Gaussian noise (AWGN) into the real-world In-phase and Quadrature (I/Q) OFDM datasets. A Convolutional Autoencoder (CAE) is exploited to implement a jamming detection over various characteristics such as heterogenous I/Q datasets; extracting relevant information on Synchronization Signal Blocks (SSBs), and fewer SSB observations with notable class imbalance. Given the characteristics of datasets, balanced datasets are acquired by employing a Conv1D conditional Wasserstein Generative Adversarial Network-Gradient Penalty(CWGAN-GP) on both majority and minority SSB observations. Additionally, we compare the performance and detection ability of the proposed CAE model on augmented datasets with benchmark models: Convolutional Denoising Autoencoder (CDAE) and Convolutional Sparse Autoencoder (CSAE). Despite the complexity of data heterogeneity involved across all datasets, CAE depicts the robustness in detection performance of jammed signal by achieving average values of 97.33% precision, 91.33% recall, 94.08% F1-score, and 94.35% accuracy over CDAE and CSAE.
* 6 pages, 5 figures, Accepted to IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications (PIMRC) 2025
Via

Jun 16, 2025
Abstract:Visual Information Extraction (VIE) converts unstructured document images into structured formats like JSON, critical for medical applications such as report analysis and online consultations. Traditional methods rely on OCR and language models, while end-to-end multimodal models offer direct JSON generation. However, domain-specific schemas and high annotation costs limit their effectiveness in medical VIE. We base our approach on the Reinforcement Learning with Verifiable Rewards (RLVR) framework to address these challenges using only 100 annotated samples. Our approach ensures dataset diversity, a balanced precision-recall reward mechanism to reduce hallucinations and improve field coverage, and innovative sampling strategies to enhance reasoning capabilities. Fine-tuning Qwen2.5-VL-7B with our RLVR method, we achieve state-of-the-art performance on medical VIE tasks, significantly improving F1, precision, and recall. While our models excel on tasks similar to medical datasets, performance drops on dissimilar tasks, highlighting the need for domain-specific optimization. Case studies further demonstrate the value of reasoning during training and inference for VIE.
Via

Jun 24, 2025
Abstract:The Extreme Operating Conditions Search (EOCS) problem is one of the key problems in relay setting calculation, which is used to ensure that the setting values of protection relays can adapt to the changing operating conditions of power systems over a period of time after deployment. The high penetration of renewable energy and the wide application of inverter-based resources make the operating conditions of renewable power systems more volatile, which urges the adoption of the online relay setting calculation strategy. However, the computation speed of existing EOCS methods based on local enumeration, heuristic algorithms, and mathematical programming cannot meet the efficiency requirement of online relay setting calculation. To reduce the time overhead, this paper, for the first time, proposes an efficient deep learning-based EOCS method suitable for online relay setting calculation. First, the power system information is formulated as four layers, i.e., a component parameter layer, a topological connection layer, an electrical distance layer, and a graph distance layer, which are fed into a parallel graph neural network (PGNN) model for feature extraction. Then, the four feature layers corresponding to each node are spliced and stretched, and then fed into the decision network to predict the extreme operating condition of the system. Finally, the proposed PGNN method is validated on the modified IEEE 39-bus and 118-bus test systems, where some of the synchronous generators are replaced by renewable generation units. The nonlinear fault characteristics of renewables are fully considered when computing fault currents. The experiment results show that the proposed PGNN method achieves higher accuracy than the existing methods in solving the EOCS problem. Meanwhile, it also provides greater improvements in online computation time.
Via

Jun 24, 2025
Abstract:Meta-reinforcement learning requires utilizing prior task distribution information obtained during exploration to rapidly adapt to unknown tasks. The efficiency of an agent's exploration hinges on accurately identifying the current task. Recent Bayes-Adaptive Deep RL approaches often rely on reconstructing the environment's reward signal, which is challenging in sparse reward settings, leading to suboptimal exploitation. Inspired by bisimulation metrics, which robustly extracts behavioral similarity in continuous MDPs, we propose SimBelief-a novel meta-RL framework via measuring similarity of task belief in Bayes-Adaptive MDP (BAMDP). SimBelief effectively extracts common features of similar task distributions, enabling efficient task identification and exploration in sparse reward environments. We introduce latent task belief metric to learn the common structure of similar tasks and incorporate it into the specific task belief. By learning the latent dynamics across task distributions, we connect shared latent task belief features with specific task features, facilitating rapid task identification and adaptation. Our method outperforms state-of-the-art baselines on sparse reward MuJoCo and panda-gym tasks.
Via

Jun 23, 2025
Abstract:Accurate 6D pose estimation is key for robotic manipulation, enabling precise object localization for tasks like grasping. We present RAG-6DPose, a retrieval-augmented approach that leverages 3D CAD models as a knowledge base by integrating both visual and geometric cues. Our RAG-6DPose roughly contains three stages: 1) Building a Multi-Modal CAD Knowledge Base by extracting 2D visual features from multi-view CAD rendered images and also attaching 3D points; 2) Retrieving relevant CAD features from the knowledge base based on the current query image via our ReSPC module; and 3) Incorporating retrieved CAD information to refine pose predictions via retrieval-augmented decoding. Experimental results on standard benchmarks and real-world robotic tasks demonstrate the effectiveness and robustness of our approach, particularly in handling occlusions and novel viewpoints. Supplementary material is available on our project website: https://sressers.github.io/RAG-6DPose .
* Accepted by IROS 2025
Via

Jun 24, 2025
Abstract:For more than a decade now, academicians and online platform administrators have been studying solutions to the problem of bot detection. Bots are computer algorithms whose use is far from being benign: malicious bots are purposely created to distribute spam, sponsor public characters and, ultimately, induce a bias within the public opinion. To fight the bot invasion on our online ecosystem, several approaches have been implemented, mostly based on (supervised and unsupervised) classifiers, which adopt the most varied account features, from the simplest to the most expensive ones to be extracted from the raw data obtainable through the Twitter public APIs. In this exploratory study, using Twitter as a benchmark, we compare the performances of four state-of-art feature sets in detecting novel bots: one of the output scores of the popular bot detector Botometer, which considers more than 1,000 features of an account to take a decision; two feature sets based on the account profile and timeline; and the information about the Twitter client from which the user tweets. The results of our analysis, conducted on six recently released datasets of Twitter accounts, hint at the possible use of general-purpose classifiers and cheap-to-compute account features for the detection of evolved bots.
* Information Processing & Management, Volume 58, Issue 6, November
2021, 102685
* pre-print version
Via

Jun 24, 2025
Abstract:This paper provides preliminary results on exploring the task of performing turn-level data augmentation for dialogue system based on different types of commonsense relationships, and the automatic evaluation of the generated synthetic turns. The proposed methodology takes advantage of the extended knowledge and zero-shot capabilities of pretrained Large Language Models (LLMs) to follow instructions, understand contextual information, and their commonsense reasoning capabilities. The approach draws inspiration from methodologies like Chain-of-Thought (CoT), applied more explicitly to the task of prompt-based generation for dialogue-based data augmentation conditioned on commonsense attributes, and the automatic evaluation of the generated dialogues. To assess the effectiveness of the proposed approach, first we extracted 200 randomly selected partial dialogues, from 5 different well-known dialogue datasets, and generate alternative responses conditioned on different event commonsense attributes. This novel dataset allows us to measure the proficiency of LLMs in generating contextually relevant commonsense knowledge, particularly up to 12 different specific ATOMIC [10] database relations. Secondly, we propose an evaluation framework to automatically detect the quality of the generated dataset inspired by the ACCENT [26] metric, which offers a nuanced approach to assess event commonsense. However, our method does not follow ACCENT's complex eventrelation tuple extraction process. Instead, we propose an instruction-based prompt for each commonsense attribute and use state-of-the-art LLMs to automatically detect the original attributes used when creating each augmented turn in the previous step. Preliminary results suggest that our approach effectively harnesses LLMs capabilities for commonsense reasoning and evaluation in dialogue systems.
Via

Jun 25, 2025
Abstract:In this work, we propose a division-and-summarization (DaS) framework for dense video captioning. After partitioning each untrimmed long video as multiple event proposals, where each event proposal consists of a set of short video segments, we extract visual feature (e.g., C3D feature) from each segment and use the existing image/video captioning approach to generate one sentence description for this segment. Considering that the generated sentences contain rich semantic descriptions about the whole event proposal, we formulate the dense video captioning task as a visual cue aided sentence summarization problem and propose a new two stage Long Short Term Memory (LSTM) approach equipped with a new hierarchical attention mechanism to summarize all generated sentences as one descriptive sentence with the aid of visual features. Specifically, the first-stage LSTM network takes all semantic words from the generated sentences and the visual features from all segments within one event proposal as the input, and acts as the encoder to effectively summarize both semantic and visual information related to this event proposal. The second-stage LSTM network takes the output from the first-stage LSTM network and the visual features from all video segments within one event proposal as the input, and acts as the decoder to generate one descriptive sentence for this event proposal. Our comprehensive experiments on the ActivityNet Captions dataset demonstrate the effectiveness of our newly proposed DaS framework for dense video captioning.
* 10 pages
Via

Jun 17, 2025
Abstract:This paper introduces ORD-CC32 , an open research dataset derived from the 1932 Cairo Congress of Arab Music recordings, a historically significant collection representing diverse Arab musical traditions. The dataset includes structured metadata, melodic and rhythmic mode tags (maqam and iqa), manually labeled tonic information, and acoustic features extracted using state-of-the-art pitch detection methods. These resources support computational studies of tuning, temperament, and regional variations in Arab music. A case study using pitch histograms demonstrates the potential for data-driven analysis of microtonal differences across regions. By making this dataset openly available, we aim to enable interdisciplinary research in computational ethnomusicology, music information retrieval (MIR), cultural studies, and digital heritage preservation. ORD-CC32 is shared on Zenodo with tools for feature extraction and metadata retrieval.
* 14 pages, 4 figures, 4 tables
Via
