Abstract:Accessibility remains a critical concern in today's society, as many technologies are not developed to support the full range of user needs. Existing multi-agent systems (MAS) often cannot provide comprehensive assistance for users in need due to the lack of customization stemming from closed-source designs. Consequently, individuals with disabilities frequently encounter significant barriers when attempting to interact with digital environments. We introduce MATE, a multimodal accessibility MAS, which performs the modality conversions based on the user's needs. The system is useful for assisting people with disabilities by ensuring that data will be converted to an understandable format. For instance, if the user cannot see well and receives an image, the system converts this image to its audio description. MATE can be applied to a wide range of domains, industries, and areas, such as healthcare, and can become a useful assistant for various groups of users. The system supports multiple types of models, ranging from LLM API calling to using custom machine learning (ML) classifiers. This flexibility ensures that the system can be adapted to various needs and is compatible with a wide variety of hardware. Since the system is expected to run locally, it ensures the privacy and security of sensitive information. In addition, the framework can be effectively integrated with institutional technologies (e.g., digital healthcare service) for real-time user assistance. Furthermore, we introduce ModCon-Task-Identifier, a model that is capable of extracting the precise modality conversion task from the user input. Numerous experiments show that ModCon-Task-Identifier consistently outperforms other LLMs and statistical models on our custom data. Our code and data are publicly available at https://github.com/AlgazinovAleksandr/Multi-Agent-MATE.
Abstract:In-network computation represents a transformative approach to addressing the escalating demands of Artificial Intelligence (AI) workloads on network infrastructure. By leveraging the processing capabilities of network devices such as switches, routers, and Network Interface Cards (NICs), this paradigm enables AI computations to be performed directly within the network fabric, significantly reducing latency, enhancing throughput, and optimizing resource utilization. This paper provides a comprehensive analysis of optimizing in-network computation for AI, exploring the evolution of programmable network architectures, such as Software-Defined Networking (SDN) and Programmable Data Planes (PDPs), and their convergence with AI. It examines methodologies for mapping AI models onto resource-constrained network devices, addressing challenges like limited memory and computational capabilities through efficient algorithm design and model compression techniques. The paper also highlights advancements in distributed learning, particularly in-network aggregation, and the potential of federated learning to enhance privacy and scalability. Frameworks like Planter and Quark are discussed for simplifying development, alongside key applications such as intelligent network monitoring, intrusion detection, traffic management, and Edge AI. Future research directions, including runtime programmability, standardized benchmarks, and new applications paradigms, are proposed to advance this rapidly evolving field. This survey underscores the potential of in-network AI to create intelligent, efficient, and responsive networks capable of meeting the demands of next-generation AI applications.