Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Information Extraction": models, code, and papers

Information Extraction Under Privacy Constraints

Jan 17, 2016
Shahab Asoodeh, Mario Diaz, Fady Alajaji, Tamás Linder

A privacy-constrained information extraction problem is considered where for a pair of correlated discrete random variables $(X,Y)$ governed by a given joint distribution, an agent observes $Y$ and wants to convey to a potentially public user as much information about $Y$ as possible without compromising the amount of information revealed about $X$. To this end, the so-called {\em rate-privacy function} is introduced to quantify the maximal amount of information (measured in terms of mutual information) that can be extracted from $Y$ under a privacy constraint between $X$ and the extracted information, where privacy is measured using either mutual information or maximal correlation. Properties of the rate-privacy function are analyzed and information-theoretic and estimation-theoretic interpretations of it are presented for both the mutual information and maximal correlation privacy measures. It is also shown that the rate-privacy function admits a closed-form expression for a large family of joint distributions of $(X,Y)$. Finally, the rate-privacy function under the mutual information privacy measure is considered for the case where $(X,Y)$ has a joint probability density function by studying the problem where the extracted information is a uniform quantization of $Y$ corrupted by additive Gaussian noise. The asymptotic behavior of the rate-privacy function is studied as the quantization resolution grows without bound and it is observed that not all of the properties of the rate-privacy function carry over from the discrete to the continuous case.

* 55 pages, 6 figures. Improved the organization and added detailed literature review 
  
Access Paper or Ask Questions

Pipelines for Procedural Information Extraction from Scientific Literature: Towards Recipes using Machine Learning and Data Science

Dec 16, 2019
Huichen Yang, Carlos A. Aguirre, Maria F. De La Torre, Derek Christensen, Luis Bobadilla, Emily Davich, Jordan Roth, Lei Luo, Yihong Theis, Alice Lam, T. Yong-Jin Han, David Buttler, William H. Hsu

This paper describes a machine learning and data science pipeline for structured information extraction from documents, implemented as a suite of open-source tools and extensions to existing tools. It centers around a methodology for extracting procedural information in the form of recipes, stepwise procedures for creating an artifact (in this case synthesizing a nanomaterial), from published scientific literature. From our overall goal of producing recipes from free text, we derive the technical objectives of a system consisting of pipeline stages: document acquisition and filtering, payload extraction, recipe step extraction as a relationship extraction task, recipe assembly, and presentation through an information retrieval interface with question answering (QA) functionality. This system meets computational information and knowledge management (CIKM) requirements of metadata-driven payload extraction, named entity extraction, and relationship extraction from text. Functional contributions described in this paper include semi-supervised machine learning methods for PDF filtering and payload extraction tasks, followed by structured extraction and data transformation tasks beginning with section extraction, recipe steps as information tuples, and finally assembled recipes. Measurable objective criteria for extraction quality include precision and recall of recipe steps, ordering constraints, and QA accuracy, precision, and recall. Results, key novel contributions, and significant open problems derived from this work center around the attribution of these holistic quality measures to specific machine learning and inference stages of the pipeline, each with their performance measures. The desired recipes contain identified preconditions, material inputs, and operations, and constitute the overall output generated by our computational information and knowledge management (CIKM) system.

* 15th International Conference on Document Analysis and Recognition Workshops (ICDARW 2019) 
  
Access Paper or Ask Questions

Spatial Dual-Modality Graph Reasoning for Key Information Extraction

Mar 26, 2021
Hongbin Sun, Zhanghui Kuang, Xiaoyu Yue, Chenhao Lin, Wayne Zhang

Key information extraction from document images is of paramount importance in office automation. Conventional template matching based approaches fail to generalize well to document images of unseen templates, and are not robust against text recognition errors. In this paper, we propose an end-to-end Spatial Dual-Modality Graph Reasoning method (SDMG-R) to extract key information from unstructured document images. We model document images as dual-modality graphs, nodes of which encode both the visual and textual features of detected text regions, and edges of which represent the spatial relations between neighboring text regions. The key information extraction is solved by iteratively propagating messages along graph edges and reasoning the categories of graph nodes. In order to roundly evaluate our proposed method as well as boost the future research, we release a new dataset named WildReceipt, which is collected and annotated tailored for the evaluation of key information extraction from document images of unseen templates in the wild. It contains 25 key information categories, a total of about 69000 text boxes, and is about 2 times larger than the existing public datasets. Extensive experiments validate that all information including visual features, textual features and spatial relations can benefit key information extraction. It has been shown that SDMG-R can effectively extract key information from document images of unseen templates, and obtain new state-of-the-art results on the recent popular benchmark SROIE and our WildReceipt. Our code and dataset will be publicly released.

  
Access Paper or Ask Questions

A frame semantic overview of NLP-based information extraction for cancer-related EHR notes

Apr 02, 2019
Surabhi Datta, Elmer V Bernstam, Kirk Roberts

Objective: There is a lot of information about cancer in Electronic Health Record (EHR) notes that can be useful for biomedical research provided natural language processing (NLP) methods are available to extract and structure this information. In this paper, we present a scoping review of existing clinical NLP literature for cancer. Methods: We identified studies describing an NLP method to extract specific cancer-related information from EHR sources from PubMed, Google Scholar, ACL Anthology, and existing reviews. Two exclusion criteria were used in this study. We excluded articles where the extraction techniques used were too broad to be represented as frames and also where very low-level extraction methods were used. 79 articles were included in the final review. We organized this information according to frame semantic principles to help identify common areas of overlap and potential gaps. Results: Frames were created from the reviewed articles pertaining to cancer information such as cancer diagnosis, tumor description, cancer procedure, breast cancer diagnosis, prostate cancer diagnosis and pain in prostate cancer patients. These frames included both a definition as well as specific frame elements (i.e. extractable attributes). We found that cancer diagnosis was the most common frame among the reviewed papers (36 out of 79), with recent work focusing on extracting information related to treatment and breast cancer diagnosis. Conclusion: The list of common frames described in this paper identifies important cancer-related information extracted by existing NLP techniques and serves as a useful resource for future researchers requiring cancer information extracted from EHR notes. We also argue, due to the heavy duplication of cancer NLP systems, that a general purpose resource of annotated cancer frames and corresponding NLP tools would be valuable.

* 2 figures, 4 tables 
  
Access Paper or Ask Questions

Jointly Learning Span Extraction and Sequence Labeling for Information Extraction from Business Documents

May 26, 2022
Nguyen Hong Son, Hieu M. Vu, Tuan-Anh D. Nguyen, Minh-Tien Nguyen

This paper introduces a new information extraction model for business documents. Different from prior studies which only base on span extraction or sequence labeling, the model takes into account advantage of both span extraction and sequence labeling. The combination allows the model to deal with long documents with sparse information (the small amount of extracted information). The model is trained end-to-end to jointly optimize the two tasks in a unified manner. Experimental results on four business datasets in English and Japanese show that the model achieves promising results and is significantly faster than the normal span-based extraction method. The code is also available.

* Accepted to IJCNN 2022 
  
Access Paper or Ask Questions

Better Call the Plumber: Orchestrating Dynamic Information Extraction Pipelines

Feb 22, 2021
Mohamad Yaser Jaradeh, Kuldeep Singh, Markus Stocker, Andreas Both, Sören Auer

In the last decade, a large number of Knowledge Graph (KG) information extraction approaches were proposed. Albeit effective, these efforts are disjoint, and their collective strengths and weaknesses in effective KG information extraction (IE) have not been studied in the literature. We propose Plumber, the first framework that brings together the research community's disjoint IE efforts. The Plumber architecture comprises 33 reusable components for various KG information extraction subtasks, such as coreference resolution, entity linking, and relation extraction. Using these components,Plumber dynamically generates suitable information extraction pipelines and offers overall 264 distinct pipelines.We study the optimization problem of choosing suitable pipelines based on input sentences. To do so, we train a transformer-based classification model that extracts contextual embeddings from the input and finds an appropriate pipeline. We study the efficacy of Plumber for extracting the KG triples using standard datasets over two KGs: DBpedia, and Open Research Knowledge Graph (ORKG). Our results demonstrate the effectiveness of Plumber in dynamically generating KG information extraction pipelines,outperforming all baselines agnostics of the underlying KG. Furthermore,we provide an analysis of collective failure cases, study the similarities and synergies among integrated components, and discuss their limitations.

* Accepted in ICWE 2021 
  
Access Paper or Ask Questions

Natural Language Processing for Information Extraction

Jul 06, 2018
Sonit Singh

With rise of digital age, there is an explosion of information in the form of news, articles, social media, and so on. Much of this data lies in unstructured form and manually managing and effectively making use of it is tedious, boring and labor intensive. This explosion of information and need for more sophisticated and efficient information handling tools gives rise to Information Extraction(IE) and Information Retrieval(IR) technology. Information Extraction systems takes natural language text as input and produces structured information specified by certain criteria, that is relevant to a particular application. Various sub-tasks of IE such as Named Entity Recognition, Coreference Resolution, Named Entity Linking, Relation Extraction, Knowledge Base reasoning forms the building blocks of various high end Natural Language Processing (NLP) tasks such as Machine Translation, Question-Answering System, Natural Language Understanding, Text Summarization and Digital Assistants like Siri, Cortana and Google Now. This paper introduces Information Extraction technology, its various sub-tasks, highlights state-of-the-art research in various IE subtasks, current challenges and future research directions.

* 24 pages, 1 figure 
  
Access Paper or Ask Questions

Towards Robust Visual Information Extraction in Real World: New Dataset and Novel Solution

Jan 24, 2021
Jiapeng Wang, Chongyu Liu, Lianwen Jin, Guozhi Tang, Jiaxin Zhang, Shuaitao Zhang, Qianying Wang, Yaqiang Wu, Mingxiang Cai

Visual information extraction (VIE) has attracted considerable attention recently owing to its various advanced applications such as document understanding, automatic marking and intelligent education. Most existing works decoupled this problem into several independent sub-tasks of text spotting (text detection and recognition) and information extraction, which completely ignored the high correlation among them during optimization. In this paper, we propose a robust visual information extraction system (VIES) towards real-world scenarios, which is a unified end-to-end trainable framework for simultaneous text detection, recognition and information extraction by taking a single document image as input and outputting the structured information. Specifically, the information extraction branch collects abundant visual and semantic representations from text spotting for multimodal feature fusion and conversely, provides higher-level semantic clues to contribute to the optimization of text spotting. Moreover, regarding the shortage of public benchmarks, we construct a fully-annotated dataset called EPHOIE (https://github.com/HCIILAB/EPHOIE), which is the first Chinese benchmark for both text spotting and visual information extraction. EPHOIE consists of 1,494 images of examination paper head with complex layouts and background, including a total of 15,771 Chinese handwritten or printed text instances. Compared with the state-of-the-art methods, our VIES shows significant superior performance on the EPHOIE dataset and achieves a 9.01% F-score gain on the widely used SROIE dataset under the end-to-end scenario.

* 8 pages, 5 figures, to be published in AAAI 2021 
  
Access Paper or Ask Questions

BioIE: Biomedical Information Extraction with Multi-head Attention Enhanced Graph Convolutional Network

Oct 26, 2021
Jialun Wu, Yang Liu, Zeyu Gao, Tieliang Gong, Chunbao Wang, Chen Li

Constructing large-scaled medical knowledge graphs can significantly boost healthcare applications for medical surveillance, bring much attention from recent research. An essential step in constructing large-scale MKG is extracting information from medical reports. Recently, information extraction techniques have been proposed and show promising performance in biomedical information extraction. However, these methods only consider limited types of entity and relation due to the noisy biomedical text data with complex entity correlations. Thus, they fail to provide enough information for constructing MKGs and restrict the downstream applications. To address this issue, we propose Biomedical Information Extraction, a hybrid neural network to extract relations from biomedical text and unstructured medical reports. Our model utilizes a multi-head attention enhanced graph convolutional network to capture the complex relations and context information while resisting the noise from the data. We evaluate our model on two major biomedical relationship extraction tasks, chemical-disease relation and chemical-protein interaction, and a cross-hospital pan-cancer pathology report corpus. The results show that our method achieves superior performance than baselines. Furthermore, we evaluate the applicability of our method under a transfer learning setting and show that BioIE achieves promising performance in processing medical text from different formats and writing styles.

* BIBM 2021 accepted, including 9 pages, 1 figure 
  
Access Paper or Ask Questions

FrameNet CNL: a Knowledge Representation and Information Extraction Language

Jun 10, 2014
Guntis Barzdins

The paper presents a FrameNet-based information extraction and knowledge representation framework, called FrameNet-CNL. The framework is used on natural language documents and represents the extracted knowledge in a tailor-made Frame-ontology from which unambiguous FrameNet-CNL paraphrase text can be generated automatically in multiple languages. This approach brings together the fields of information extraction and CNL, because a source text can be considered belonging to FrameNet-CNL, if information extraction parser produces the correct knowledge representation as a result. We describe a state-of-the-art information extraction parser used by a national news agency and speculate that FrameNet-CNL eventually could shape the natural language subset used for writing the newswire articles.

* CNL-2014 camera-ready version. The final publication is available at link.springer.com 
  
Access Paper or Ask Questions
<<
1
2
3
4
5
6
7
8
>>