Abstract:Graph representation learning is a powerful method to extract features from graph-structured data, such as analog/mixed-signal (AMS) circuits. However, training deep learning models for AMS designs is severely limited by the scarcity of integrated circuit design data. In this work, we present CircuitGPS, a few-shot learning method for parasitic effect prediction in AMS circuits. The circuit netlist is represented as a heterogeneous graph, with the coupling capacitance modeled as a link. CircuitGPS is pre-trained on link prediction and fine-tuned on edge regression. The proposed method starts with a small-hop sampling technique that converts a link or a node into a subgraph. Then, the subgraph embeddings are learned with a hybrid graph Transformer. Additionally, CircuitGPS integrates a low-cost positional encoding that summarizes the positional and structural information of the sampled subgraph. CircuitGPS improves the accuracy of coupling existence by at least 20\% and reduces the MAE of capacitance estimation by at least 0.067 compared to existing methods. Our method demonstrates strong inherent scalability, enabling direct application to diverse AMS circuit designs through zero-shot learning. Furthermore, the ablation studies provide valuable insights into graph models for representation learning.