What is Voice Conversion? Voice conversion is the process of converting the voice of one speaker into the voice of another speaker.
Papers and Code
Dec 11, 2024
Abstract:This paper presents a new voice conversion model capable of transforming both speaking and singing voices. It addresses key challenges in current systems, such as conveying emotions, managing pronunciation and accent changes, and reproducing non-verbal sounds. One of the model's standout features is its ability to perform accent conversion on hybrid voice samples that encompass both speech and singing, allowing it to change the speaker's accent while preserving the original content and prosody. The proposed model uses an encoder-decoder architecture: the encoder is based on HuBERT to process the speech's acoustic and linguistic content, while the HiFi-GAN decoder audio matches the target speaker's voice. The model incorporates fundamental frequency (f0) features and singer embeddings to enhance performance while ensuring the pitch & tone accuracy and vocal identity are preserved during transformation. This approach improves how naturally and flexibly voice style can be transformed, showing strong potential for applications in voice dubbing, content creation, and technologies like Text-to-Speech (TTS) and Interactive Voice Response (IVR) systems.
* 7 pages, 5 figures, 2 tables
Via

Dec 10, 2024
Abstract:Zero-shot voice conversion (VC) aims to transfer the timbre from the source speaker to an arbitrary unseen speaker while preserving the original linguistic content. Despite recent advancements in zero-shot VC using language model-based or diffusion-based approaches, several challenges remain: 1) current approaches primarily focus on adapting timbre from unseen speakers and are unable to transfer style and timbre to different unseen speakers independently; 2) these approaches often suffer from slower inference speeds due to the autoregressive modeling methods or the need for numerous sampling steps; 3) the quality and similarity of the converted samples are still not fully satisfactory. To address these challenges, we propose a style controllable zero-shot VC approach named StableVC, which aims to transfer timbre and style from source speech to different unseen target speakers. Specifically, we decompose speech into linguistic content, timbre, and style, and then employ a conditional flow matching module to reconstruct the high-quality mel-spectrogram based on these decomposed features. To effectively capture timbre and style in a zero-shot manner, we introduce a novel dual attention mechanism with an adaptive gate, rather than using conventional feature concatenation. With this non-autoregressive design, StableVC can efficiently capture the intricate timbre and style from different unseen speakers and generate high-quality speech significantly faster than real-time. Experiments demonstrate that our proposed StableVC outperforms state-of-the-art baseline systems in zero-shot VC and achieves flexible control over timbre and style from different unseen speakers. Moreover, StableVC offers approximately 25x and 1.65x faster sampling compared to autoregressive and diffusion-based baselines.
* Accepted by AAAI 2025
Via

Nov 25, 2024
Abstract:One-shot voice conversion (VC) is a method that enables the transformation between any two speakers using only a single target speaker utterance. Existing methods often rely on complex architectures and pre-trained speaker verification (SV) models to improve the fidelity of converted speech. Recent works utilizing K-means quantization (KQ) with self-supervised learning (SSL) features have proven capable of capturing content information from speech. However, they often struggle to preserve speaking variation, such as prosodic detail and phonetic variation, particularly with smaller codebooks. In this work, we propose a simple yet effective one-shot VC model that utilizes the characteristics of SSL features and speech attributes. Our approach addresses the issue of losing speaking variation, enabling high-fidelity voice conversion trained with only reconstruction losses, without requiring external speaker embeddings. We demonstrate the performance of our model across 6 evaluation metrics, with results highlighting the benefits of the speaking variation compensation method.
* 5 pages
Via

Nov 29, 2024
Abstract:One-shot voice conversion (VC) aims to alter the timbre of speech from a source speaker to match that of a target speaker using just a single reference speech from the target, while preserving the semantic content of the original source speech. Despite advancements in one-shot VC, its effectiveness decreases in real-world scenarios where reference speeches, often sourced from the internet, contain various disturbances like background noise. To address this issue, we introduce Noro, a Noise Robust One-shot VC system. Noro features innovative components tailored for VC using noisy reference speeches, including a dual-branch reference encoding module and a noise-agnostic contrastive speaker loss. Experimental results demonstrate that Noro outperforms our baseline system in both clean and noisy scenarios, highlighting its efficacy for real-world applications. Additionally, we investigate the hidden speaker representation capabilities of our baseline system by repurposing its reference encoder as a speaker encoder. The results shows that it is competitive with several advanced self-supervised learning models for speaker representation under the SUPERB settings, highlighting the potential for advancing speaker representation learning through one-shot VC task.
* Submitted to IEEE OJSP
Via

Dec 16, 2024
Abstract:Rapid advancements in speech synthesis and voice conversion bring convenience but also new security risks, creating an urgent need for effective audio deepfake detection. Although current models perform well, their effectiveness diminishes when confronted with the diverse and evolving nature of real-world deepfakes. To address this issue, we propose a continual learning method named Region-Based Optimization (RegO) for audio deepfake detection. Specifically, we use the Fisher information matrix to measure important neuron regions for real and fake audio detection, dividing them into four regions. First, we directly fine-tune the less important regions to quickly adapt to new tasks. Next, we apply gradient optimization in parallel for regions important only to real audio detection, and in orthogonal directions for regions important only to fake audio detection. For regions that are important to both, we use sample proportion-based adaptive gradient optimization. This region-adaptive optimization ensures an appropriate trade-off between memory stability and learning plasticity. Additionally, to address the increase of redundant neurons from old tasks, we further introduce the Ebbinghaus forgetting mechanism to release them, thereby promoting the capability of the model to learn more generalized discriminative features. Experimental results show our method achieves a 21.3% improvement in EER over the state-of-the-art continual learning approach RWM for audio deepfake detection. Moreover, the effectiveness of RegO extends beyond the audio deepfake detection domain, showing potential significance in other tasks, such as image recognition. The code is available at https://github.com/cyjie429/RegO
* Accepted by AAAI 2025
Via

Jan 19, 2025
Abstract:Natural Language Processing is a crucial frontier in artificial intelligence, with broad applications in many areas, including public health, agriculture, education, and commerce. However, due to the lack of substantial linguistic resources, many African languages remain underrepresented in this digital transformation. This paper presents a case study on the development of linguistic corpora for three under-resourced Kenyan languages, Kidaw'ida, Kalenjin, and Dholuo, with the aim of advancing natural language processing and linguistic research in African communities. Our project, which lasted one year, employed a selective crowd-sourcing methodology to collect text and speech data from native speakers of these languages. Data collection involved (1) recording conversations and translation of the resulting text into Kiswahili, thereby creating parallel corpora, and (2) reading and recording written texts to generate speech corpora. We made these resources freely accessible via open-research platforms, namely Zenodo for the parallel text corpora and Mozilla Common Voice for the speech datasets, thus facilitating ongoing contributions and access for developers to train models and develop Natural Language Processing applications. The project demonstrates how grassroots efforts in corpus building can support the inclusion of African languages in artificial intelligence innovations. In addition to filling resource gaps, these corpora are vital in promoting linguistic diversity and empowering local communities by enabling Natural Language Processing applications tailored to their needs. As African countries like Kenya increasingly embrace digital transformation, developing indigenous language resources becomes essential for inclusive growth. We encourage continued collaboration from native speakers and developers to expand and utilize these corpora.
* 13 pages, 1 figure, intend to submit to a Springer Nature journal
Via

Nov 15, 2024
Abstract:Zero-shot voice conversion aims to transform a source speech utterance to match the timbre of a reference speech from an unseen speaker. Traditional approaches struggle with timbre leakage, insufficient timbre representation, and mismatches between training and inference tasks. We propose Seed-VC, a novel framework that addresses these issues by introducing an external timbre shifter during training to perturb the source speech timbre, mitigating leakage and aligning training with inference. Additionally, we employ a diffusion transformer that leverages the entire reference speech context, capturing fine-grained timbre features through in-context learning. Experiments demonstrate that Seed-VC outperforms strong baselines like OpenVoice and CosyVoice, achieving higher speaker similarity and lower word error rates in zero-shot voice conversion tasks. We further extend our approach to zero-shot singing voice conversion by incorporating fundamental frequency (F0) conditioning, resulting in comparative performance to current state-of-the-art methods. Our findings highlight the effectiveness of Seed-VC in overcoming core challenges, paving the way for more accurate and versatile voice conversion systems.
Via

Dec 02, 2024
Abstract:This paper describes the zero-shot spontaneous style TTS system for the ISCSLP 2024 Conversational Voice Clone Challenge (CoVoC). We propose a LLaMA-based codec language model with a delay pattern to achieve spontaneous style voice cloning. To improve speech intelligibility, we introduce the Classifier-Free Guidance (CFG) strategy in the language model to strengthen conditional guidance on token prediction. To generate high-quality utterances, we adopt effective data preprocessing operations and fine-tune our model with selected high-quality spontaneous speech data. The official evaluations in the CoVoC constrained track show that our system achieves the best speech naturalness MOS of 3.80 and obtains considerable speech quality and speaker similarity results.
* Accepted by ISCSLP 2024
Via

Jan 30, 2025
Abstract:Timely and accurate assessment of cognitive impairment is a major unmet need in populations at risk. Alterations in speech and language can be early predictors of Alzheimer's disease and related dementias (ADRD) before clinical signs of neurodegeneration. Voice biomarkers offer a scalable and non-invasive solution for automated screening. However, the clinical applicability of machine learning (ML) remains limited by challenges in generalisability, interpretability, and access to patient data to train clinically applicable predictive models. Using DementiaBank recordings (N=291, 64% female), we evaluated ML techniques for ADRD screening and severity prediction from spoken language. We validated model generalisability with pilot data collected in-residence from older adults (N=22, 59% female). Risk stratification and linguistic feature importance analysis enhanced the interpretability and clinical utility of predictions. For ADRD classification, a Random Forest applied to lexical features achieved a mean sensitivity of 69.4% (95% confidence interval (CI) = 66.4-72.5) and specificity of 83.3% (78.0-88.7). On real-world pilot data, this model achieved a mean sensitivity of 70.0% (58.0-82.0) and specificity of 52.5% (39.3-65.7). For severity prediction using Mini-Mental State Examination (MMSE) scores, a Random Forest Regressor achieved a mean absolute MMSE error of 3.7 (3.7-3.8), with comparable performance of 3.3 (3.1-3.5) on pilot data. Linguistic features associated with higher ADRD risk included increased use of pronouns and adverbs, greater disfluency, reduced analytical thinking, lower lexical diversity and fewer words reflecting a psychological state of completion. Our interpretable predictive modelling offers a novel approach for in-home integration with conversational AI to monitor cognitive health and triage higher-risk individuals, enabling earlier detection and intervention.
Via

Dec 03, 2024
Abstract:We introduce GLM-4-Voice, an intelligent and human-like end-to-end spoken chatbot. It supports both Chinese and English, engages in real-time voice conversations, and varies vocal nuances such as emotion, intonation, speech rate, and dialect according to user instructions. GLM-4-Voice uses an ultra-low bitrate (175bps), single-codebook speech tokenizer with 12.5Hz frame rate derived from an automatic speech recognition (ASR) model by incorporating a vector-quantized bottleneck into the encoder. To efficiently transfer knowledge from text to speech modalities, we synthesize speech-text interleaved data from existing text pre-training corpora using a text-to-token model. We continue pre-training from the pre-trained text language model GLM-4-9B with a combination of unsupervised speech data, interleaved speech-text data, and supervised speech-text data, scaling up to 1 trillion tokens, achieving state-of-the-art performance in both speech language modeling and spoken question answering. We then fine-tune the pre-trained model with high-quality conversational speech data, achieving superior performance compared to existing baselines in both conversational ability and speech quality. The open models can be accessed through https://github.com/THUDM/GLM-4-Voice and https://huggingface.co/THUDM/glm-4-voice-9b.
Via
