Abstract:In human conversations, short backchannel utterances such as "yeah" and "oh" play a crucial role in facilitating smooth and engaging dialogue. These backchannels signal attentiveness and understanding without interrupting the speaker, making their accurate prediction essential for creating more natural conversational agents. This paper proposes a novel method for real-time, continuous backchannel prediction using a fine-tuned Voice Activity Projection (VAP) model. While existing approaches have relied on turn-based or artificially balanced datasets, our approach predicts both the timing and type of backchannels in a continuous and frame-wise manner on unbalanced, real-world datasets. We first pre-train the VAP model on a general dialogue corpus to capture conversational dynamics and then fine-tune it on a specialized dataset focused on backchannel behavior. Experimental results demonstrate that our model outperforms baseline methods in both timing and type prediction tasks, achieving robust performance in real-time environments. This research offers a promising step toward more responsive and human-like dialogue systems, with implications for interactive spoken dialogue applications such as virtual assistants and robots.
Abstract:Recently, Conformer has achieved state-of-the-art performance in many speech recognition tasks. However, the Transformer-based models show significant deterioration for long-form speech, such as lectures, because the self-attention mechanism becomes unreliable with the computation of the square order of the input length. To solve the problem, we incorporate a kind of state-space model, Hungry Hungry Hippos (H3), to replace or complement the multi-head self-attention (MHSA). H3 allows for efficient modeling of long-form sequences with a linear-order computation. In experiments using two datasets of CSJ and LibriSpeech, our proposed H3-Conformer model performs efficient and robust recognition of long-form speech. Moreover, we propose a hybrid of H3 and MHSA and show that using H3 in higher layers and MHSA in lower layers provides significant improvement in online recognition. We also investigate a parallel use of H3 and MHSA in all layers, resulting in the best performance.
Abstract:This study examined users' behavioral differences in a large corpus of Japanese human-robot interactions, comparing interactions between a tele-operated robot and an autonomous dialogue system. We analyzed user spoken behaviors in both attentive listening and job interview dialogue scenarios. Results revealed significant differences in metrics such as speech length, speaking rate, fillers, backchannels, disfluencies, and laughter between operator-controlled and autonomous conditions. Furthermore, we developed predictive models to distinguish between operator and autonomous system conditions. Our models demonstrated higher accuracy and precision compared to the baseline model, with several models also achieving a higher F1 score than the baseline.
Abstract:Japan faces many challenges related to its aging society, including increasing rates of cognitive decline in the population and a shortage of caregivers. Efforts have begun to explore solutions using artificial intelligence (AI), especially socially embodied intelligent agents and robots that can communicate with people. Yet, there has been little research on the compatibility of these agents with older adults in various everyday situations. To this end, we conducted a user study to evaluate a robot that functions as a facilitator for a group conversation protocol designed to prevent cognitive decline. We modified the robot to use backchannelling, a natural human way of speaking, to increase receptiveness of the robot and enjoyment of the group conversation experience. We conducted a cross-generational study with young adults and older adults. Qualitative analyses indicated that younger adults perceived the backchannelling version of the robot as kinder, more trustworthy, and more acceptable than the non-backchannelling robot. Finally, we found that the robot's backchannelling elicited nonverbal backchanneling in older participants.
Abstract:Serialized output training (SOT) attracts increasing attention due to its convenience and flexibility for multi-speaker automatic speech recognition (ASR). However, it is not easy to train with attention loss only. In this paper, we propose the overlapped encoding separation (EncSep) to fully utilize the benefits of the connectionist temporal classification (CTC) and attention hybrid loss. This additional separator is inserted after the encoder to extract the multi-speaker information with CTC losses. Furthermore, we propose the serialized speech information guidance SOT (GEncSep) to further utilize the separated encodings. The separated streams are concatenated to provide single-speaker information to guide attention during decoding. The experimental results on LibriMix show that the single-speaker encoding can be separated from the overlapped encoding. The CTC loss helps to improve the encoder representation under complex scenarios. GEncSep further improved performance.
Abstract:With the strong representational power of large language models (LLMs), generative error correction (GER) for automatic speech recognition (ASR) aims to provide semantic and phonetic refinements to address ASR errors. This work explores how LLM-based GER can enhance and expand the capabilities of Japanese language processing, presenting the first GER benchmark for Japanese ASR with 0.9-2.6k text utterances. We also introduce a new multi-pass augmented generative error correction (MPA GER) by integrating multiple system hypotheses on the input side with corrections from multiple LLMs on the output side and then merging them. To the best of our knowledge, this is the first investigation of the use of LLMs for Japanese GER, which involves second-pass language modeling on the output transcriptions generated by the ASR system (e.g., N-best hypotheses). Our experiments demonstrated performance improvement in the proposed methods of ASR quality and generalization both in SPREDS-U1-ja and CSJ data.
Abstract:Recent approaches for empathetic response generation mainly focus on emotional resonance and user understanding, without considering the system's personality. Consistent personality is evident in real human expression and is important for creating trustworthy systems. To address this problem, we propose StyEmp, which aims to stylize the empathetic response generation with a consistent personality. Specifically, it incorporates a multi-grained prefix mechanism designed to capture the intricate relationship between a system's personality and its empathetic expressions. Furthermore, we introduce a personality reinforcement module that leverages contrastive learning to calibrate the generation model, ensuring that responses are both empathetic and reflective of a distinct personality. Automatic and human evaluations on the EMPATHETICDIALOGUES benchmark show that StyEmp outperforms competitive baselines in terms of both empathy and personality expressions.
Abstract:This paper investigates the application of voice activity projection (VAP), a predictive turn-taking model for spoken dialogue, on multilingual data, encompassing English, Mandarin, and Japanese. The VAP model continuously predicts the upcoming voice activities of participants in dyadic dialogue, leveraging a cross-attention Transformer to capture the dynamic interplay between participants. The results show that a monolingual VAP model trained on one language does not make good predictions when applied to other languages. However, a multilingual model, trained on all three languages, demonstrates predictive performance on par with monolingual models across all languages. Further analyses show that the multilingual model has learned to discern the language of the input signal. We also analyze the sensitivity to pitch, a prosodic cue that is thought to be important for turn-taking. Finally, we compare two different audio encoders, contrastive predictive coding (CPC) pre-trained on English, with a recent model based on multilingual wav2vec 2.0 (MMS).
Abstract:Adapting an automatic speech recognition (ASR) system to unseen noise environments is crucial. Integrating adapters into neural networks has emerged as a potent technique for transfer learning. This study thoroughly investigates adapter-based ASR adaptation in noisy environments. We conducted experiments using the CHiME--4 dataset. The results show that inserting the adapter in the shallow layer yields superior effectiveness, and there is no significant difference between adapting solely within the shallow layer and adapting across all layers. The simulated data helps the system to improve its performance under real noise conditions. Nonetheless, when the amount of data is the same, the real data is more effective than the simulated data. Multi-condition training is still useful for adapter training. Furthermore, integrating adapters into speech enhancement-based ASR systems yields substantial improvements.
Abstract:The handling of communication breakdowns and loss of engagement is an important aspect of spoken dialogue systems, particularly for chatting systems such as attentive listening, where the user is mostly speaking. We presume that a human is best equipped to handle this task and rescue the flow of conversation. To this end, we propose a semi-autonomous system, where a remote operator can take control of an autonomous attentive listening system in real-time. In order to make human intervention easy and consistent, we introduce automatic detection of low interest and engagement to provide explicit takeover prompts to the remote operator. We implement this semi-autonomous system which detects takeover points for the operator and compare it to fully tele-operated and fully autonomous attentive listening systems. We find that the semi-autonomous system is generally perceived more positively than the autonomous system. The results suggest that identifying points of conversation when the user starts to lose interest may help us improve a fully autonomous dialogue system.