Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
LLM-based client simulation has emerged as a promising tool for training novice counselors and evaluating automated counseling systems. However, existing client simulation approaches face three key challenges: (1) limited diversity and realism in client profiles, (2) the lack of a principled framework for modeling realistic client behaviors, and (3) a scarcity in Chinese-language settings. To address these limitations, we propose PsyCLIENT, a novel simulation framework grounded in conversational trajectory modeling. By conditioning LLM generation on predefined real-world trajectories that incorporate explicit behavior labels and content constraints, our approach ensures diverse and realistic interactions. We further introduce PsyCLIENT-CP, the first open-source Chinese client profile dataset, covering 60 distinct counseling topics. Comprehensive evaluations involving licensed professional counselors demonstrate that PsyCLIENT significantly outperforms baselines in terms of authenticity and training effectiveness. Notably, the simulated clients are nearly indistinguishable from human clients, achieving an about 95\% expert confusion rate in discrimination tasks. These findings indicate that conversational trajectory modeling effectively bridges the gap between theoretical client profiles and dynamic, realistic simulations, offering a robust solution for mental health education and research. Code and data will be released to facilitate future research in mental health counseling.
Knowledge graphs (KGs) provide structured evidence that can ground large language model (LLM) reasoning for knowledge-intensive question answering. However, many practical KGs are private, and sending retrieved triples or exploration traces to closed-source LLM APIs introduces leakage risk. Existing privacy treatments focus on masking entity names, but they still face four limitations: structural leakage under semantic masking, uncontrollable remote interaction, fragile multi-hop and multi-entity reasoning, and limited experience reuse for stability and efficiency. To address these issues, we propose PrivGemo, a privacy-preserving retrieval-augmented framework for KG-grounded reasoning with memory-guided exposure control. PrivGemo uses a dual-tower design to keep raw KG knowledge local while enabling remote reasoning over an anonymized view that goes beyond name masking to limit both semantic and structural exposure. PrivGemo supports multi-hop, multi-entity reasoning by retrieving anonymized long-hop paths that connect all topic entities, while keeping grounding and verification on the local KG. A hierarchical controller and a privacy-aware experience memory further reduce unnecessary exploration and remote interactions. Comprehensive experiments on six benchmarks show that PrivGemo achieves overall state-of-the-art results, outperforming the strongest baseline by up to 17.1%. Furthermore, PrivGemo enables smaller models (e.g., Qwen3-4B) to achieve reasoning performance comparable to that of GPT-4-Turbo.
Warning: This paper consists of examples representing regional biases in Indian regions that might be offensive towards a particular region. While social biases corresponding to gender, race, socio-economic conditions, etc., have been extensively studied in the major applications of Natural Language Processing (NLP), biases corresponding to regions have garnered less attention. This is mainly because of (i) difficulty in the extraction of regional bias datasets, (ii) disagreements in annotation due to inherent human biases, and (iii) regional biases being studied in combination with other types of social biases and often being under-represented. This paper focuses on creating a dataset IndRegBias, consisting of regional biases in an Indian context reflected in users' comments on popular social media platforms, namely Reddit and YouTube. We carefully selected 25,000 comments appearing on various threads in Reddit and videos on YouTube discussing trending topics on regional issues in India. Furthermore, we propose a multilevel annotation strategy to annotate the comments describing the severity of regional biased statements. To detect the presence of regional bias and its severity in IndRegBias, we evaluate open-source Large Language Models (LLMs) and Indic Language Models (ILMs) using zero-shot, few-shot, and fine-tuning strategies. We observe that zero-shot and few-shot approaches show lower accuracy in detecting regional biases and severity in the majority of the LLMs and ILMs. However, the fine-tuning approach significantly enhances the performance of the LLM in detecting Indian regional bias along with its severity.
Large Language Models (LLMs) often exhibit increased response latency and degraded answer quality as dialogue length grows, making effective context management essential. However, existing methods rely on extra LLM calls to build memory or perform offline memory construction without considering the current user utterance, which can introduce inefficiencies or disrupt conversational continuity. We introduce DyCP, a lightweight context management method that dynamically segment and retrieve relevant memory at query time. It preserves the sequential structure of dialogue without predefined topic boundaries and supports efficient, adaptive context retrieval. Across three long-form dialogue benchmarks, LoCoMo, MT-Bench+, and SCM4LLMs, and multiple LLMs, DyCP consistently improves answer quality while reducing response latency. We also examine the gap between modern LLMs' expanded context windows and their actual long-context processing capacity, highlighting the continued importance of effective context management.
Automatic License Plate Recognition is a frequent research topic due to its wide-ranging practical applications. While recent studies use synthetic images to improve License Plate Recognition (LPR) results, there remain several limitations in these efforts. This work addresses these constraints by comprehensively exploring the integration of real and synthetic data to enhance LPR performance. We subject 16 Optical Character Recognition (OCR) models to a benchmarking process involving 12 public datasets acquired from various regions. Several key findings emerge from our investigation. Primarily, the massive incorporation of synthetic data substantially boosts model performance in both intra- and cross-dataset scenarios. We examine three distinct methodologies for generating synthetic data: template-based generation, character permutation, and utilizing a Generative Adversarial Network (GAN) model, each contributing significantly to performance enhancement. The combined use of these methodologies demonstrates a notable synergistic effect, leading to end-to-end results that surpass those reached by state-of-the-art methods and established commercial systems. Our experiments also underscore the efficacy of synthetic data in mitigating challenges posed by limited training data, enabling remarkable results to be achieved even with small fractions of the original training data. Finally, we investigate the trade-off between accuracy and speed among different models, identifying those that strike the optimal balance in each intra-dataset and cross-dataset settings.
Aspect Extraction (AE) is a key task in Aspect-Based Sentiment Analysis (ABSA), yet it remains difficult to apply in low-resource and code-switched contexts like Taglish, a mix of Tagalog and English commonly used in Filipino e-commerce reviews. This paper introduces a comprehensive AE pipeline designed for Taglish, combining rule-based, large language model (LLM)-based, and fine-tuning techniques to address both aspect identification and extraction. A Hierarchical Aspect Framework (HAF) is developed through multi-method topic modeling, along with a dual-mode tagging scheme for explicit and implicit aspects. For aspect identification, four distinct models are evaluated: a Rule-Based system, a Generative LLM (Gemini 2.0 Flash), and two Fine-Tuned Gemma-3 1B models trained on different datasets (Rule-Based vs. LLM-Annotated). Results indicate that the Generative LLM achieved the highest performance across all tasks (Macro F1 0.91), demonstrating superior capability in handling implicit aspects. In contrast, the fine-tuned models exhibited limited performance due to dataset imbalance and architectural capacity constraints. This work contributes a scalable and linguistically adaptive framework for enhancing ABSA in diverse, code-switched environments.
Large language models (LLMs) have demonstrated competitive performance in zero-shot multilingual machine translation (MT). Some follow-up works further improved MT performance via preference optimization, but they leave a key aspect largely underexplored: the order in which data samples are given during training. We address this topic by integrating curriculum learning into various state-of-the-art preference optimization algorithms to boost MT performance. We introduce a novel curriculum learning strategy with restarts (CLewR), which reiterates easy-to-hard curriculum multiple times during training to effectively mitigate the catastrophic forgetting of easy examples. We demonstrate consistent gains across several model families (Gemma2, Qwen2.5, Llama3.1) and preference optimization techniques. We publicly release our code at https://github.com/alexandra-dragomir/CLewR.
Large Language Models (LLMs) are increasingly deployed in high-stakes contexts where their outputs influence real-world decisions. However, evaluating bias in LLM outputs remains methodologically challenging due to sensitivity to prompt wording, limited multilingual coverage, and the lack of standardized metrics that enable reliable comparison across models. This paper introduces BiasLab, an open-source, model-agnostic evaluation framework for quantifying output-level (extrinsic) bias through a multilingual, robustness-oriented experimental design. BiasLab constructs mirrored probe pairs under a strict dual-framing scheme: an affirmative assertion favoring Target A and a reverse assertion obtained by deterministic target substitution favoring Target B, while preserving identical linguistic structure. To reduce dependence on prompt templates, BiasLab performs repeated evaluation under randomized instructional wrappers and enforces a fixed-choice Likert response format to maximize comparability across models and languages. Responses are normalized into agreement labels using an LLM-based judge, aligned for polarity consistency across framings, and aggregated into quantitative bias indicators with descriptive statistics including effect sizes and neutrality rates. The framework supports evaluation across diverse bias axes, including demographic, cultural, political, and geopolitical topics, and produces reproducible artifacts such as structured reports and comparative visualizations. BiasLab contributes a standardized methodology for cross-lingual and framing-sensitive bias measurement that complements intrinsic and dataset-based audits, enabling researchers and institutions to benchmark robustness and make better-informed deployment decisions.
Linear text segmentation is a long-standing problem in natural language processing (NLP), focused on dividing continuous text into coherent and semantically meaningful units. Despite its importance, the task remains challenging due to the complexity of defining topic boundaries, the variability in discourse structure, and the need to balance local coherence with global context. These difficulties hinder downstream applications such as summarization, information retrieval, and question answering. In this work, we introduce SegNSP, framing linear text segmentation as a next sentence prediction (NSP) task. Although NSP has largely been abandoned in modern pre-training, its explicit modeling of sentence-to-sentence continuity makes it a natural fit for detecting topic boundaries. We propose a label-agnostic NSP approach, which predicts whether the next sentence continues the current topic without requiring explicit topic labels, and enhance it with a segmentation-aware loss combined with harder negative sampling to better capture discourse continuity. Unlike recent proposals that leverage NSP alongside auxiliary topic classification, our approach avoids task-specific supervision. We evaluate our model against established baselines on two datasets, CitiLink-Minutes, for which we establish the first segmentation benchmark, and WikiSection. On CitiLink-Minutes, SegNSP achieves a B-$F_1$ of 0.79, closely aligning with human-annotated topic transitions, while on WikiSection it attains a B-F$_1$ of 0.65, outperforming the strongest reproducible baseline, TopSeg, by 0.17 absolute points. These results demonstrate competitive and robust performance, highlighting the effectiveness of modeling sentence-to-sentence continuity for improving segmentation quality and supporting downstream NLP applications.
The rapid development of large language models has led to an increase in AI-generated text, with students increasingly using LLM-generated content as their own work, which violates academic integrity. This paper presents an evaluation of AI text detection methods, including both traditional machine learning models and transformer-based architectures. We utilize two datasets, HC3 and DAIGT v2, to build a unified benchmark and apply a topic-based data split to prevent information leakage. This approach ensures robust generalization across unseen domains. Our experiments show that TF-IDF logistic regression achieves a reasonable baseline accuracy of 82.87%. However, deep learning models outperform it. The BiLSTM classifier achieves an accuracy of 88.86%, while DistilBERT achieves a similar accuracy of 88.11% with the highest ROC-AUC score of 0.96, demonstrating the strongest overall performance. The results indicate that contextual semantic modeling is significantly superior to lexical features and highlight the importance of mitigating topic memorization through appropriate evaluation protocols. The limitations of this work are primarily related to dataset diversity and computational constraints. In future work, we plan to expand dataset diversity and utilize parameter-efficient fine-tuning methods such as LoRA. We also plan to explore smaller or distilled models and employ more efficient batching strategies and hardware-aware optimization.