Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Large language models (LLMs) are highly capable of answering questions, but they are often unaware of their own knowledge boundary, i.e., knowing what they know and what they don't know. As a result, they can generate factually incorrect responses on topics they do not have enough knowledge of, commonly known as hallucination. Rather than hallucinating, a language model should be more honest and respond with "I don't know" when it does not have enough knowledge about a topic. Many methods have been proposed to improve LLM honesty, but their evaluations lack robustness, as they do not take into account the knowledge that the LLM has ingested during its pretraining. In this paper, we propose a more robust evaluation benchmark dataset for LLM honesty by utilizing Pythia, a truly open LLM with publicly available pretraining data. In addition, we also propose a novel method for harnessing the pretraining data to build a more honest LLM.
Existing research often treats parliamentary discourse as a homogeneous whole, overlooking topic-specific patterns. Parliamentary speeches address a wide range of topics, some of which evoke stronger emotions than others. While everyone has intuitive assumptions about what the most emotive topics in a parliament may be, there has been little research into the emotions typically linked to different topics. This paper strives to fill this gap by examining emotion expression among the topics of parliamentary speeches delivered in Eduskunta, the Finnish Parliament, between 2000 and 2020. An emotion analysis model is used to investigate emotion expression in topics, from both synchronic and diachronic perspectives. The results strengthen evidence of increasing positivity in parliamentary speech and provide further insights into topic-specific emotion expression within parliamentary debate.
Recent advances in large language models (LLMs) have made automated multiple-choice question (MCQ) generation increasingly feasible; however, reliably producing items that satisfy controlled cognitive demands remains a challenge. To address this gap, we introduce ReQUESTA, a hybrid, multi-agent framework for generating cognitively diverse MCQs that systematically target text-based, inferential, and main idea comprehension. ReQUESTA decomposes MCQ authoring into specialized subtasks and coordinates LLM-powered agents with rule-based components to support planning, controlled generation, iterative evaluation, and post-processing. We evaluated the framework in a large-scale reading comprehension study using academic expository texts, comparing ReQUESTA-generated MCQs with those produced by a single-pass GPT-5 zero-shot baseline. Psychometric analyses of learner responses assessed item difficulty and discrimination, while expert raters evaluated question quality across multiple dimensions, including topic relevance and distractor quality. Results showed that ReQUESTA-generated items were consistently more challenging, more discriminative, and more strongly aligned with overall reading comprehension performance. Expert evaluations further indicated stronger alignment with central concepts and superior distractor linguistic consistency and semantic plausibility, particularly for inferential questions. These findings demonstrate that hybrid, agentic orchestration can systematically improve the reliability and controllability of LLM-based generation, highlighting workflow design as a key lever for structured artifact generation beyond single-pass prompting.
Benchmark Design in Black-Box Optimization (BBO) is a fundamental yet open-ended topic. Early BBO benchmarks are predominantly human-crafted, introducing expert bias and constraining diversity. Automating this design process can relieve the human-in-the-loop burden while enhancing diversity and objectivity. We propose Evolution of Benchmark (EoB), an automated BBO benchmark designer empowered by the large language model (LLM) and its program evolution capability. Specifically, we formulate benchmark design as a bi-objective optimization problem towards maximizing (i) landscape diversity and (ii) algorithm-differentiation ability across a portfolio of BBO solvers. Under this paradigm, EoB iteratively prompts LLM to evolve a population of benchmark programs and employs a reflection-based scheme to co-evolve the landscape and its corresponding program. Comprehensive experiments validate our EoB is a competitive candidate in multi-dimensional usages: 1) Benchmarking BBO algorithms; 2) Training and testing learning-assisted BBO algorithms; 3) Extending proxy for expensive real-world problems.
Advancing beyond single monolithic language models (LMs), recent research increasingly recognizes the importance of model collaboration, where multiple LMs collaborate, compose, and complement each other. Existing research on this topic has mostly been disparate and disconnected, from different research communities, and lacks rigorous comparison. To consolidate existing research and establish model collaboration as a school of thought, we present MoCo: a one-stop Python library of executing, benchmarking, and comparing model collaboration algorithms at scale. MoCo features 26 model collaboration methods, spanning diverse levels of cross-model information exchange such as routing, text, logit, and model parameters. MoCo integrates 25 evaluation datasets spanning reasoning, QA, code, safety, and more, while users could flexibly bring their own data. Extensive experiments with MoCo demonstrate that most collaboration strategies outperform models without collaboration in 61.0% of (model, data) settings on average, with the most effective methods outperforming by up to 25.8%. We further analyze the scaling of model collaboration strategies, the training/inference efficiency of diverse methods, highlight that the collaborative system solves problems where single LMs struggle, and discuss future work in model collaboration, all made possible by MoCo. We envision MoCo as a valuable toolkit to facilitate and turbocharge the quest for an open, modular, decentralized, and collaborative AI future.
The rise of conspiracy theories has created far-reaching societal harm in the public discourse by eroding trust and fueling polarization. Beyond this public impact lies a deeply personal toll on the friends and families of conspiracy believers, a dimension often overlooked in large-scale computational research. This study fills this gap by systematically mapping radicalization journeys and quantifying the associated emotional toll inflicted on loved ones. We use the prominent case of QAnon as a case study, analyzing 12747 narratives from the r/QAnonCasualties support community through a novel mixed-methods approach. First, we use topic modeling (BERTopic) to map the radicalization trajectories, identifying key pre-existing conditions, triggers, and post-radicalization characteristics. From this, we apply an LDA-based graphical model to uncover six recurring archetypes of QAnon adherents, which we term "radicalization personas." Finally, using LLM-assisted emotion detection and regression modeling, we link these personas to the specific emotional toll reported by narrators. Our findings reveal that these personas are not just descriptive; they are powerful predictors of the specific emotional harms experienced by narrators. Radicalization perceived as a deliberate ideological choice is associated with narrator anger and disgust, while those marked by personal and cognitive collapse are linked to fear and sadness. This work provides the first empirical framework for understanding radicalization as a relational phenomenon, offering a vital roadmap for researchers and practitioners to navigate its interpersonal fallout.
The rapid integration of Large Language Models (LLMs) into educational assessment rests on the unverified assumption that instruction following capability translates directly to objective adjudication. We demonstrate that this assumption is fundamentally flawed. Instead of evaluating code quality, models frequently decouple from the submission's logic to satisfy hidden directives, a systemic vulnerability we term the Compliance Paradox, where models fine-tuned for extreme helpfulness are vulnerable to adversarial manipulation. To expose this, we introduce the Semantic-Preserving Adversarial Code Injection (SPACI) Framework and the Abstract Syntax Tree-Aware Semantic Injection Protocol (AST-ASIP). These methods exploit the Syntax-Semantics Gap by embedding adversarial directives into syntactically inert regions (trivia nodes) of the Abstract Syntax Tree. Through a large-scale evaluation of 9 SOTA models across 25,000 submissions in Python, C, C++, and Java, we reveal catastrophic failure rates (>95%) in high-capacity open-weights models like DeepSeek-V3, which systematically prioritize hidden formatting constraints over code correctness. We quantify this failure using our novel tripartite framework measuring Decoupling Probability, Score Divergence, and Pedagogical Severity to demonstrate the widespread "False Certification" of functionally broken code. Our findings suggest that current alignment paradigms create a "Trojan" vulnerability in automated grading, necessitating a shift from standard RLHF toward domain-specific Adjudicative Robustness, where models are conditioned to prioritize evidence over instruction compliance. We release our complete dataset and injection framework to facilitate further research on the topic.
Topic modeling has extensive applications in text mining and data analysis across various industrial sectors. Although the concept of granularity holds significant value for business applications by providing deeper insights, the capability of topic modeling methods to produce granular topics has not been thoroughly explored. In this context, this paper introduces a framework called TIDE, which primarily provides a novel granular topic modeling method based on large language models (LLMs) as a core feature, along with other useful functionalities for business applications, such as summarizing long documents, topic parenting, and distillation. Through extensive experiments on a variety of public and real-world business datasets, we demonstrate that TIDE's topic modeling approach outperforms modern topic modeling methods, and our auxiliary components provide valuable support for dealing with industrial business scenarios. The TIDE framework is currently undergoing the process of being open sourced.
Despite strong performance on existing benchmarks, it remains unclear whether large language models can reason over genuinely novel scientific information. Most evaluations score end-to-end RAG pipelines, where reasoning is confounded with retrieval and toolchain choices, and the signal is further contaminated by parametric memorization and open-web volatility. We introduce DeR2, a controlled deep-research sandbox that isolates document-grounded reasoning while preserving core difficulties of deep search: multi-step synthesis, denoising, and evidence-based conclusion making. DeR2 decouples evidence access from reasoning via four regimes--Instruction-only, Concepts (gold concepts without documents), Related-only (only relevant documents), and Full-set (relevant documents plus topically related distractors)--yielding interpretable regime gaps that operationalize retrieval loss vs. reasoning loss and enable fine-grained error attribution. To prevent parametric leakage, we apply a two-phase validation that requires parametric failure without evidence while ensuring oracle-concept solvability. To ensure reproducibility, each instance provides a frozen document library (drawn from 2023-2025 theoretical papers) with expert-annotated concepts and validated rationales. Experiments across a diverse set of state-of-the-art foundation models reveal substantial variation and significant headroom: some models exhibit mode-switch fragility, performing worse with the Full-set than with Instruction-only, while others show structural concept misuse, correctly naming concepts but failing to execute them as procedures.
LLMs are ubiquitous in modern NLP, and while their applicability extends to texts produced for democratic activities such as online deliberations or large-scale citizen consultations, ethical questions have been raised for their usage as analysis tools. We continue this line of research with two main goals: (a) to develop resources that can help standardize citizen contributions in public forums at the pragmatic level, and make them easier to use in topic modeling and political analysis; (b) to study how well this standardization can reliably be performed by small, open-weights LLMs, i.e. models that can be run locally and transparently with limited resources. Accordingly, we introduce Corpus Clarification as a preprocessing framework for large-scale consultation data that transforms noisy, multi-topic contributions into structured, self-contained argumentative units ready for downstream analysis. We present GDN-CC, a manually-curated dataset of 1,231 contributions to the French Grand Débat National, comprising 2,285 argumentative units annotated for argumentative structure and manually clarified. We then show that finetuned Small Language Models match or outperform LLMs on reproducing these annotations, and measure their usability for an opinion clustering task. We finally release GDN-CC-large, an automatically annotated corpus of 240k contributions, the largest annotated democratic consultation dataset to date.