What is Topic Modeling? Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Papers and Code
Sep 04, 2025
Abstract:Driven by autonomous driving's demands for precise 3D perception, 3D semantic occupancy prediction has become a pivotal research topic. Unlike bird's-eye-view (BEV) methods, which restrict scene representation to a 2D plane, occupancy prediction leverages a complete 3D voxel grid to model spatial structures in all dimensions, thereby capturing semantic variations along the vertical axis. However, most existing approaches overlook height-axis information when processing voxel features. And conventional SENet-style channel attention assigns uniform weight across all height layers, limiting their ability to emphasize features at different heights. To address these limitations, we propose SliceSemOcc, a novel vertical slice based multimodal framework for 3D semantic occupancy representation. Specifically, we extract voxel features along the height-axis using both global and local vertical slices. Then, a global local fusion module adaptively reconciles fine-grained spatial details with holistic contextual information. Furthermore, we propose the SEAttention3D module, which preserves height-wise resolution through average pooling and assigns dynamic channel attention weights to each height layer. Extensive experiments on nuScenes-SurroundOcc and nuScenes-OpenOccupancy datasets verify that our method significantly enhances mean IoU, achieving especially pronounced gains on most small-object categories. Detailed ablation studies further validate the effectiveness of the proposed SliceSemOcc framework.
* 14 pages, accepted by PRCV2025
Via

Aug 28, 2025
Abstract:Multimodal Large Language Models (MLLMs) equipped with step-by-step thinking capabilities have demonstrated remarkable performance on complex reasoning problems. However, this thinking process is redundant for simple problems solvable without complex reasoning. To address this inefficiency, we propose R-4B, an auto-thinking MLLM, which can adaptively decide when to think based on problem complexity. The central idea of R-4B is to empower the model with both thinking and non-thinking capabilities using bi-mode annealing, and apply Bi-mode Policy Optimization~(BPO) to improve the model's accuracy in determining whether to activate the thinking process. Specifically, we first train the model on a carefully curated dataset spanning various topics, which contains samples from both thinking and non-thinking modes. Then it undergoes a second phase of training under an improved GRPO framework, where the policy model is forced to generate responses from both modes for each input query. Experimental results show that R-4B achieves state-of-the-art performance across 25 challenging benchmarks. It outperforms Qwen2.5-VL-7B in most tasks and achieves performance comparable to larger models such as Kimi-VL-A3B-Thinking-2506 (16B) on reasoning-intensive benchmarks with lower computational cost.
* 20 pages, 14 figures, 5 tables
Via

Aug 27, 2025
Abstract:Objectivity in journalism has long been contested, oscillating between ideals of neutral, fact-based reporting and the inevitability of subjective framing. With the advent of large language models (LLMs), these tensions are now mediated by algorithmic systems whose training data and design choices may themselves embed cultural or ideological biases. This study investigates geopolitical parallax-systematic divergence in news quality and subjectivity assessments-by comparing article-level embeddings from Chinese-origin (Qwen, BGE, Jina) and Western-origin (Snowflake, Granite) model families. We evaluate both on a human-annotated news quality benchmark spanning fifteen stylistic, informational, and affective dimensions, and on parallel corpora covering politically sensitive topics, including Palestine and reciprocal China-United States coverage. Using logistic regression probes and matched-topic evaluation, we quantify per-metric differences in predicted positive-class probabilities between model families. Our findings reveal consistent, non-random divergences aligned with model origin. In Palestine-related coverage, Western models assign higher subjectivity and positive emotion scores, while Chinese models emphasize novelty and descriptiveness. Cross-topic analysis shows asymmetries in structural quality metrics Chinese-on-US scoring notably lower in fluency, conciseness, technicality, and overall quality-contrasted by higher negative emotion scores. These patterns align with media bias theory and our distinction between semantic, emotional, and relational subjectivity, and extend LLM bias literature by showing that geopolitical framing effects persist in downstream quality assessment tasks. We conclude that LLM-based media evaluation pipelines require cultural calibration to avoid conflating content differences with model-induced bias.
* 7 pages, 4 figures, 7 tables
Via

Aug 29, 2025
Abstract:Retrievability of a document is a collection-based statistic that measures its expected (reciprocal) rank of being retrieved within a specific rank cut-off. A collection with uniformly distributed retrievability scores across documents is an indicator of fair document exposure. While retrievability scores have been used to quantify the fairness of exposure for a collection, in our work, we use the distribution of retrievability scores to measure the exposure bias of retrieval models. We hypothesise that an uneven distribution of retrievability scores across the entire collection may not accurately reflect exposure bias but rather indicate variations in topical relevance. As a solution, we propose a topic-focused localised retrievability measure, which we call \textit{T-Retrievability} (topic-retrievability), which first computes retrievability scores over multiple groups of topically-related documents, and then aggregates these localised values to obtain the collection-level statistics. Our analysis using this proposed T-Retrievability measure uncovers new insights into the exposure characteristics of various neural ranking models. The findings suggest that this localised measure provides a more nuanced understanding of exposure fairness, offering a more reliable approach for assessing document accessibility in IR systems.
* Accepted by Proceedings of the 34th ACM International Conference on
Information and Knowledge Management (CIKM 2025), November 10-14, 2025,
Seoul, Republic of Korea
Via

Aug 11, 2025
Abstract:With massive texts on social media, users and analysts often rely on topic modeling techniques to quickly extract key themes and gain insights. Traditional topic modeling techniques, such as Latent Dirichlet Allocation (LDA), provide valuable insights but are computationally expensive, making them impractical for real-time data analysis. Although recent advances in distributed training and fast sampling methods have improved efficiency, real-time topic exploration remains a significant challenge. In this paper, we present MLego, an interactive query framework designed to support real-time topic modeling analysis by leveraging model materialization and reuse. Instead of retraining models from scratch, MLego efficiently merges materialized topic models to construct approximate results at interactive speeds. To further enhance efficiency, we introduce a hierarchical plan search strategy for single queries and an optimized query reordering technique for batch queries. We integrate MLego into a visual analytics prototype system, enabling users to explore large-scale textual datasets through interactive queries. Extensive experiments demonstrate that MLego significantly reduces computation costs while maintaining high-quality topic modeling results. MLego enhances existing visual analytics approaches, which primarily focus on user-driven topic modeling, by enabling real-time, query-driven exploration. This complements traditional methods and bridges the gap between scalable topic modeling and interactive data analysis.
* 14 pages
Via

Aug 27, 2025
Abstract:Access to diverse perspectives is essential for understanding real-world events, yet most news retrieval systems prioritize textual relevance, leading to redundant results and limited viewpoint exposure. We propose NEWSCOPE, a two-stage framework for diverse news retrieval that enhances event coverage by explicitly modeling semantic variation at the sentence level. The first stage retrieves topically relevant content using dense retrieval, while the second stage applies sentence-level clustering and diversity-aware re-ranking to surface complementary information. To evaluate retrieval diversity, we introduce three interpretable metrics, namely Average Pairwise Distance, Positive Cluster Coverage, and Information Density Ratio, and construct two paragraph-level benchmarks: LocalNews and DSGlobal. Experiments show that NEWSCOPE consistently outperforms strong baselines, achieving significantly higher diversity without compromising relevance. Our results demonstrate the effectiveness of fine-grained, interpretable modeling in mitigating redundancy and promoting comprehensive event understanding. The data and code are available at https://github.com/tangyixuan/NEWSCOPE.
* Accepted by EMNLP 2025
Via

Aug 27, 2025
Abstract:Key point extraction is an important task in argument summarization which involves extracting high-level short summaries from arguments. Existing approaches for KP extraction have been mostly evaluated on the popular ArgKP21 dataset. In this paper, we highlight some of the major limitations of the ArgKP21 dataset and demonstrate the need for new benchmarks that are more representative of actual human conversations. Using SoTA large language models (LLMs), we curate a new argument key point extraction dataset called ArgCMV comprising of around 12K arguments from actual online human debates spread across over 3K topics. Our dataset exhibits higher complexity such as longer, co-referencing arguments, higher presence of subjective discourse units, and a larger range of topics over ArgKP21. We show that existing methods do not adapt well to ArgCMV and provide extensive benchmark results by experimenting with existing baselines and latest open source models. This work introduces a novel KP extraction dataset for long-context online discussions, setting the stage for the next generation of LLM-driven summarization research.
Via

Aug 24, 2025
Abstract:AI agents have recently shown significant promise in software engineering. Much public attention has been transfixed on the topic of code generation from Large Language Models (LLMs) via a prompt. However, software engineering is much more than programming, and AI agents go far beyond instructions given by a prompt. At the code level, common software tasks include code generation, testing, and program repair. Design level software tasks may include architecture exploration, requirements understanding, and requirements enforcement at the code level. Each of these software tasks involves micro-decisions which can be taken autonomously by an AI agent, aided by program analysis tools. This creates the vision of an AI software engineer, where the AI agent can be seen as a member of a development team. Conceptually, the key to successfully developing trustworthy agentic AI-based software workflows will be to resolve the core difficulty in software engineering - the deciphering and clarification of developer intent. Specification inference, or deciphering the intent, thus lies at the heart of many software tasks, including software maintenance and program repair. A successful deployment of agentic technology into software engineering would involve making conceptual progress in such intent inference via agents. Trusting the AI agent becomes a key aspect, as software engineering becomes more automated. Higher automation also leads to higher volume of code being automatically generated, and then integrated into code-bases. Thus to deal with this explosion, an emerging direction is AI-based verification and validation (V & V) of AI generated code. We posit that agentic software workflows in future will include such AIbased V&V.
* 4 pages
Via

Aug 23, 2025
Abstract:AI Alignment, primarily in the form of Reinforcement Learning from Human Feedback (RLHF), has been a cornerstone of the post-training phase in developing Large Language Models (LLMs). It has also been a popular research topic across various disciplines beyond Computer Science, including Philosophy and Law, among others, highlighting the socio-technical challenges involved. Nonetheless, except for the computational techniques related to alignment, there has been limited focus on the broader picture: the scope of these processes, which primarily rely on the selected objectives (values), and the data collected and used to imprint such objectives into the models. This work aims to reveal how alignment is understood and applied in practice from a value-setting and data-centric perspective. For this purpose, we investigate and survey (`audit') publicly available documentation released by 6 LLM development initiatives by 5 leading organizations shaping this technology, focusing on proprietary (OpenAI's GPT, Anthropic's Claude, Google's Gemini) and open-weight (Meta's Llama, Google's Gemma, and Alibaba's Qwen) initiatives, all published in the last 3 years. The findings are documented in detail per initiative, while there is also an overall summary concerning different aspects, mainly from a value-setting and data-centric perspective. On the basis of our findings, we discuss a series of broader related concerns.
* This is a working paper and will be updated with new information or
corrections based on community feedback
Via

Aug 26, 2025
Abstract:Quantitative Discourse Analysis has seen growing adoption with the rise of Large Language Models and computational tools. However, reliance on black box software such as MAXQDA and NVivo risks undermining methodological transparency and alignment with research goals. This paper presents a hybrid, transparent framework for QDA that combines lexical and semantic methods to enable triangulation, reproducibility, and interpretability. Drawing from a case study in historical political discourse, we demonstrate how custom Python pipelines using NLTK, spaCy, and Sentence Transformers allow fine-grained control over preprocessing, lemmatisation, and embedding generation. We further detail our iterative BERTopic modelling process, incorporating UMAP dimensionality reduction, HDBSCAN clustering, and c-TF-IDF keyword extraction, optimised through parameter tuning and multiple runs to enhance topic coherence and coverage. By juxtaposing precise lexical searches with context-aware semantic clustering, we argue for a multi-layered approach that mitigates the limitations of either method in isolation. Our workflow underscores the importance of code-level transparency, researcher agency, and methodological triangulation in computational discourse studies. Code and supplementary materials are available via GitHub.
* 5 pages conference paper, 4 tables
Via
